Cho tam giác ABC vuông tại A có AB=3cm,AC=4cm
a)Tính BC
b)Tia phân giác góc B cắt AC tại D.Từ D kẻ DH vuông góc với BC.CM:DA=DH
c)HD cắt BA tại E.CM tam giác DEC cân
d)CM:AB+AC>DH+BC
Cho Tam giác ABC vuông tại A có AB=5cm, AC=12cm
a) tính BC
b) Phân giác của góc ABC cắt AC tại D. Kẻ DH vuông góc BC (H thuộc BC)
Chứng minh Tam giác ABD = tam giác HBD
c) Tia HD cắt đường thẳng AB tại E. Chứng minh Tam giác DEC cân tại D
cho tam giác ABC có A=90 độ ,AB=3cm,AC=4cm
a,tính BC
b,so sánh góc B,C
c,kẻ tia phân giác góc C cắt AB tại I
từ I kẻ IH vuông góc với BC (H thuộc BC),AC cắt IH tại tại K chứng minh AK=BH
a, Áp dụng định lý Pytago :
ta có : \(BC^2=AC^2+AB^2\)
\(BC^2=3^2+4^2\)
\(BC^2=9+16=25=5^2\)
=>\(BC=5^{ }\)
b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn
Có : Trong tam giác ABC có BC=5, AC=4, AB=3
=> góc A > góc B > góc C
Vậy góc B > góc C
c, Xét △BIC và △AIC có
góc \(C_1=C_2\)
BAC = KHC = 90 độ
IC cạnh chung
=> △HIC = △AIC
Xét △HIB và △KIA có
IH = IA (cmt)
\(I_1=I_2\)( đối đỉnh)
Góc A = góc H = 90 độ
=> △HIB = △AIK
Vậy cạnh AK = BH
Cho tam giác ABC vuông tại A có AB=5cm;AC=12cm.Tia phân giác của góc ABC cắt AC tại D.Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. Chứng minh tam giác BKC cân và B,G,D thẳng hàng ( với G là trọng tâm của tam giác BKC.
cho tam giác ABC cân tại A, AC= 8cm tia phân giác góc B cắt AC ở D . Kẻ đường vuông góc DH từ D đến BC . Biết AC=3cm tính các cành của tam giác DHC
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D, kẻ DH vuông
góc với BC ( H ∈ BC), tia HD cắt BA kéo dài tại I.
a) Tính BC biết BA = 3cm, AC = 4cm,
b) Chứng minh ∆ ABD = ∆ HBD,
c) Cho ABC ̂ = 600. Chứng ∆ BCI là tam giác đều,
d) Chứng minh DA< DC.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔBAD=ΔBHD
=>BA=BH
Xét ΔBHI vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBI chung
Do đó: ΔBHI=ΔBAC
=>BI=BC
=>ΔBIC cân tại B
Xét ΔBIC cân tại B có \(\widehat{IBC}=60^0\)
nên ΔBIC đều
d: Ta có: DA=DH(ΔBAD=ΔBHD)
DH<DC(ΔDHC vuông tại H)
Do đó: DA<DC
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: Ta có: ΔBAD=ΔBHD
nên DA=DH
hay D nằm trên đường trung trực của AH(1)
Ta có: BA=BH
nên B nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
hay BD⊥AH
Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)
c) Xét tam giác ECK và tam giác ECA có:
EKC=EAC=90
EC cạnh chung
ECK=ECA ( vì CE là p/g của ABC)
=>Tam giác ECK=Tam giác ECA ( ch-gn)
=>CK=CA( 2 cạnh tương ứng)
Mà AB=HB( chứng minh a)
=>CK+BH=CA+AB
=>CH+KH+BK+HK=AC+AB
=>(BK+KH+CH)+HK=AC+AB
=>BC+HK=AB+AC (ĐPCM)
d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B
=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)
Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)
=\(\dfrac{360-90}{2}=135\)
=>BAK+2HAK+HAC=135
Mà BAK+HAC=BAC-HAK=90-HAK
=>90-HAK+2HAK=135
=>90+HAK=135
=>HAK=45
Cho tam giác ABC vuông tại A (AB>AC).Tia phân giác của góc ABC cắt AC tại D.Từ D kẻ đường thẳng vuông góc với BC cắt BC tại H.Trên tia AC lấy điểm E sao cho AE=AB, đường thẳng vuông góc với AC tại E cắt đường thẳng DH tại K.Từ B kẻ đường thẳng vuông góc với EK, đường thẳng này cắt EK tại I. Chứng minh:BK là tia phân giác của góc CBI.
Cho tam giác ABC vuông tại A có : AB < AC . Tia phân giác của góc B cắt AC tại H . Vẽ HD vuông góc với BC ( D thuộc BC )
a) Chứng minh tam giác BHA = tam giác BHD
b) Gọi E là giao điểm của BA và DH . Chứng minh tam giác BEC cân
c) Chứng minh góc DHC = góc ABC
( hình vẽ chỉ mang tính chất minh họa )
a) Xét tam giác ABH và tam giác DBH có :
Góc BAH = Góc BDH ( = 90 độ )
Góc ABH = góc DBH ( gt )
BH chung
=> Tam giác ABH = tam giác DBH ( ch - gn ) - đpcm ( * )
b) Xét tam giác AHE và tam giác DHC có :
Góc EAH = góc CDE ( = 90 độ )
AH = HD ( Theo ( * ) )
Góc AHE = Góc DHC ( đối đỉnh )
=> Tam giác AHE = tam giác DHC ( g.c.g )
=> AE = DC ( 1 )
Từ ( * ) => BA = BD ( 2 )
Từ ( 1 ) và ( 2 ) : BA = BC
=> Tam giác BEC cân tại B - đpcm
c) Ta có góc DHC = góc ABC ( vì cùng phụ với góc BCA ) - đpcm
Cho tam giác ABC vuông tại A có AB = 12 cm, AC = 9 cm a. Tính BC b. Kẻ BD là tia phân giác của góc B ( D thuộc AC) , kẻ DH vuông góc BC tại H . Chứng minh : tam giác BAD và tam giác DBH bằng nhau c. Kéo dài HD cắt BA tại K . Chứng minh tam giác KDC cân d.CM AH // KC
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔBAD=ΔBHD
c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó:ΔADK=ΔHDC
Suy ra: DK=DC và AK=HC
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC