Phân tích đa thức thành nhân tử: x^7 + x^2 +1
bài 1: Phân tích đa thức thành nhân tử : x^2-6x+8
bài 2: Phân tích đa thức thành nhân tử : x^8+x^7+1
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
phân tích đa thức thành phân tử(đặt nhân tử chung)
3x(x+1)^2-5x^2(x+1)+7(x+1)
\(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
Câu 56:Đa thức x(x – 7) + (7 – x)2 được phân tích thành nhân tử là:
A. (x - 7)(2x + 7) B. (x - 7)(2x - 7) C. 7(x - 7) D. (x - 7)(x + 7)
Câu 57:Phân tích đa thức x2 – 16 – 4xy + 4y2 thành nhân tử ta được:
A. (x – 2y + 4)(x + 2y + 4) B. (x – 2y + 4)(x – 2y – 4)
C. (x – 2y + 4)(x + 2y + 4) D. Không phân tích được
Câu 58:Đa thức (x – 4)2 + (x – 4) được phân tích thành nhân tử là:
A. (x + 4)(x – 4) B. (x – 4)(x – 3) C. (x + 4)(x + 3) D. (x – 4)(x – 5)
Phân tích đa thức sau thành nhân tử
\(x^7+x^2+1\)
\(f\left(x\right)=x^7+x^2+1\)
\(f\left(x\right)=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(f\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(f\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(f\left(x\right)=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(f\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét đa thức \(g\left(x\right)=x^5-x^4+x^2-x+1\). Giả sử đa thức này có nghiệm hữu tỉ \(x=\dfrac{p}{q}\left(p,q\inℤ;\left(p,q\right)=1\right)\) thì \(p|1,q|1\) nên \(x=\pm1\). Thử lại, ta thấy cả 2 nghiệm này đều không thỏa mãn. Do đó đa thức g(x) không thể có nghiệm hữu tỉ. (*)
Giả sử ta có thể phân tích tiếp \(g\left(x\right)\) thành nhân tử thì \(g\left(x\right)=h\left(x\right).j\left(x\right)\) với h(x) và j(x) là các đa thức hệ số hữu tỉ khác hằng có bậc nhỏ hơn 5 thì một trong 2 đa thức h(x), j(x) phải có bậc lẻ (vì nếu cả 2 cùng có bậc chẵn thì \(g\left(x\right)=h\left(x\right).j\left(x\right)\) sẽ có bậc chẵn, vô lí). Mà một đa thức bậc lẻ thì luôn có nghiệm nên nếu g(x) phân tích được thành nhân tử thì nó sẽ có nghiệm hữu tỉ, mâu thuẫn với (*).
Vậy ta không thể phân tích tiếp g(x) thành nhân tử. Điều này có nghĩa rằng ta đã hoàn thành xong việc phân tích f(x) thành nhân tử.
Mình có lưu ý là mọi đa thức có dạng \(f\left(x\right)=x^{3m+1}+x^{3n+2}+1\left(m,n\inℕ^∗\right)\) đều có thể phân tích được thành nhân tử theo cách tương tự.
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
câu 1:tính
a) 4x2-9y2 b) ( 3x+y)3
câu 2 phân tích đa thức thành nhân tử
b) 4x2-12x+9
câu 3:tìm x,biết:6x3+16x2-150x-400=0
câu 4:phân tích đa thức thành nhân tử:D=(x+1)(x+3)(x+5)(x+7)+15
phân tích đa thức thành nhân tử : (x-1(x-2(x+7)(x+8)+8
\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)
\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
Đặt \(q=x^2+6x-7\)ta có :
\(A=q\left(q-9\right)+8\)
\(A=q^2-9q+8\)
\(A=q^2-q-8q+8\)
\(A=q\left(q-1\right)-8\left(q-1\right)\)
\(A=\left(q-1\right)\left(q-8\right)\)
Thay \(q=x^2+6x-7\)vào A ta được :
\(A=\left(x^2+6x-7-1\right)\left(x^2+6x-7-8\right)\)
\(A=\left(x^2+6x-8\right)\left(x^2+6x-15\right)\)
phân tích đa thức thành nhân tử : (x-1) (x-2) (x+7) (x+8) +8