Tìm x,y thuộc Z biết
1, x+2y= 0
2, 5x. 10y =100
tìm x y z
5x=10y=12z biet x-y+z=100
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{9}\)
biet x.y.z=270
a) ta có: \(5x=10y\Rightarrow\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{120}=\frac{y}{60}\)
\(10y=12z\Rightarrow\frac{y}{12}=\frac{z}{10}\Rightarrow\frac{y}{60}=\frac{z}{50}\)
\(\Leftrightarrow\frac{x}{120}=\frac{y}{60}=\frac{z}{50}\)
ADTCDTSBN
có: \(\frac{x}{120}=\frac{y}{60}=\frac{z}{50}=\frac{x-y+z}{120-60+50}=\frac{100}{110}=\frac{10}{11}\)
=> x/120 = 10/11 => ...
...
rùi bn tự lm típ nha!
b) ta có: \(\frac{x}{5}=\frac{y}{6}=\frac{z}{9}=k\Rightarrow\hept{\begin{cases}x=5k\\y=6k\\z=9k\end{cases}}\)
mà xyz = 270
=> 5k.6k.9k = 270
270.k3 = 270
=> k3 = 1
=> k = 1
=> x = 5k => x = 5
y = 6k => y = 6
z = 9k => z = 9
KL:...
1. Tìm x,y,z biết
a. 5x=-10y=6z với x*y*z=-30000
b. 2x=3y; 5y=4z với 3x+4y-5z=-18
2. Cho A=\(\frac{9}{\sqrt{x}-2}\)
Tìm x thuộc Z để A thuộc Z
Tìm x và y: 5x^2+10y^2-6xy-4x-2y+3=0
Với x,y,z thuộc Z..CMR:100x+10y+z chia hết cho 21 khi và chỉ khi x-2y+4z chia hết cho 21
Tìm x,y, z biết:
2) 3x= 2y=z và x+y+z= 99
3) 6x= 10y= 14z và x+y+z= 46
1)
\(3x=2y=z\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
\(\Rightarrow\begin{cases}x=18\\y=26\\z=54\end{cases}\)
2)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{46}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1610}{71}\\y=\frac{966}{71}\\z=\frac{690}{71}\end{cases}\)
2) Tính chất tỉ lệ thức :
\(3x=2y=z\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{99}{6}=16,5\)
\(\frac{x}{3}=16,5\Rightarrow x=49,5\)
\(\frac{y}{2}=16,5\Rightarrow y=33\)
\(\frac{z}{1}=16,5\Rightarrow z=16,5\)
3) Áp dụng tính chất tỉ lệ thức :
\(6x=10y=14z\Rightarrow\frac{x}{6}=\frac{y}{10}=\frac{z}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{6+10+14}=\frac{46}{130}=\frac{23}{65}\)
\(\frac{x}{6}=\frac{23}{65}\Rightarrow x=\frac{6}{5}\)
\(\frac{y}{10}=\frac{23}{65}\Rightarrow y=\frac{46}{13}\)
\(\frac{z}{14}=\frac{23}{65}\Rightarrow z=\frac{322}{65}\)
tìm x, y thuộc Z biết: xy - 10 +5x - 2y= -115
x(y+5)-2(y+5)=-115
(y+5)(x-2)=-115
y+5 | -1 | 1 | 5 | -5 | 23 | -23 | -115 | 115 |
y | -6 | -4 | 0 | -10 | 18 | -28 | -120 | 110 |
x-2 | 115 | -115 | -23 | 23 | -5 | 5 | 1 | -1 |
x | 117 | -113 | -21 | 25 | -3 | 7 | 3 | 1 |
bạn tự kết luận nha
tìm x,y thuộc z biết: 7xy+5x-2y+4=0
\(7xy+5x-2y+4=0\)
\(\Leftrightarrow49xy+35x-14y+28=0\)
\(\Leftrightarrow7x\left(7y+5\right)-14y-10=-38\)
\(\Leftrightarrow\left(7x-2\right)\left(7y+5\right)=-38\)
Vì \(x,y\)nguyên nên \(7x-2,7y+5\)là các ước của \(38\).
Ta có bảng giá trị:
7x-2 | -38 | -19 | -2 | -1 | 1 | 2 | 19 | 38 |
7y+5 | 1 | 2 | 19 | 38 | -39 | -18 | -2 | -1 |
x | -36/7 (l) | -17/7 (l) | 0 | 1/7 (l) | 3/7 (l) | 4/7(l) | 3 | 40/7 (l) |
y | 2 | -1 |
Tìm x;y thuộc Z biết:
xy+5x-2y=13
Tìm x,y thuộc Z,biết : a) xy+5x+y=4 b)xy+14+2y+7x=-10 c)xy+x+y=2.
`a)xy+5x+y=4`
`=>x(y+5)+y+5=9`
`=>(y+5)(x+1)=9`
Vì `x,y in ZZ`
`=>x+1,y+5 in ZZ`
`=>x+1,y+5 in Ư(9)={+-1,+-3,+-9}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
`b)xy+14+2y+7x=0`
`=>y(x+2)+7(x+2)=0`
`=>(x+2)(y+7)=0`
`=>` \(\left[ \begin{array}{l}x=-2\\y=-7\end{array} \right.\)
`c)xy+x+y=2`
`=>x(y+1)+y+1=3`
`=>(x+1)(y+1)=3`
Vì `x,y in ZZ`
`=>x+1,y+1 in ZZ`
`=>x+1,y+1 in Ư(3)={+-1,+-3}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
Giải:
a) \(xy+5x+y=4\)
\(\Rightarrow x.\left(y+5\right)+\left(y+5\right)=9\)
\(\Rightarrow\left(x+1\right).\left(y+5\right)=9\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+5\right)\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng giá trị:
x+1 | -9 | -3 | -1 | 1 | 3 | 9 |
y+5 | -1 | -3 | -9 | 9 | 3 | 1 |
x | -10 | -4 | -2 | 0 | 2 | 8 |
y | -6 | -8 | -14 | 4 | -2 | -4 |
Vậy \(\left(x;y\right)=\left\{\left(-10;-6\right);\left(-4;8\right);\left(-2;-14\right);\left(0;4\right);\left(2;-2\right);\left(8;-4\right)\right\}\)
b) \(xy+14+2y+7x=-10\)
\(\Rightarrow y.\left(x+2\right)+7x+14=-10\)
\(\Rightarrow y.\left(x+2\right)+7.\left(x+2\right)=-10\)
\(\Rightarrow\left(x+2\right).\left(y+7\right)=-10\)
\(\Rightarrow\left(x+2\right)\) và \(\left(y+7\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng giá trị:
x+2 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
y+7 | 1 | 2 | 5 | 10 | -10 | -5 | -2 | -1 |
x | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
y | -6 | -5 | -2 | 3 | -17 | -12 | -9 | -8 |
Vậy \(\left(x;y\right)=\left\{\left(-12;-6\right);\left(-7;-5\right);\left(-4;-2\right);\left(-3;3\right);\left(-1;-17\right);\left(0;-12\right);\left(3;-9\right);\left(8;-8\right)\right\}\)
c) \(xy+x+y=2\)
\(\Rightarrow x.\left(y+1\right)+\left(y+1\right)=3\)
\(\Rightarrow\left(x+1\right).\left(y+1\right)=3\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x+1 | -3 | -1 | 1 | 3 |
y+1 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -2 | -4 | 2 | 0 |
Vậy \(\left(x;y\right)=\left\{\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\right\}\)
Chúc bạn học tốt!