Những câu hỏi liên quan
Thao Thanh
Xem chi tiết
Nguyễn Trọng Kiên
Xem chi tiết
Dương Thu Ngọc
Xem chi tiết
Phạm Anh Tuấn
Xem chi tiết
Lê Thị Quỳnh Giang
Xem chi tiết
Võ Đông Anh Tuấn
18 tháng 5 2016 lúc 13:58

3)PT x3+y3+z3=nx2y2z2x3+y3+z3=nx2y2z2 (*)
Không mất tỉnh tổng quát . Giả sử x≥y≥zx≥y≥z 
Xét x=1x=1 suy ra y=z=1y=z=1 và n=3n=3  
Bây giờ ta xét x≥2x≥2 
Như vậy thì theo phương trình (∗)(∗) thì 
x3+y3+z3≥(xyz)2x3+y3+z3≥(xyz)2 . Chia cả 22 vế cho x3x3 ta được : 
y3+z3x3≥(yz)2x−1y3+z3x3≥(yz)2x−1 (2)
Mà y3+z3x3≤2y3+z3x3≤2 
Suy ra x≥(yz)23x≥(yz)23 
Mà ta lại có x2|(y3+z3)x2|(y3+z3) nên 2y3≥y3+z3≥x22y3≥y3+z3≥x2 
Từ đó ta được y4z49≤x2≤2y3y4z49≤x2≤2y3
Suy ra yz4≤18⇔z≤4√18yz4≤18⇔z≤184 từ đó ta có z<2z<2 
Suy ra z=1z=1 
Thế vào (2) ta có : y2x−1≤y3+1x3≤1+1x3y2x−1≤y3+1x3≤1+1x3 
Suy ra y2≤2x+1x2≤2x+14y2≤2x+1x2≤2x+14  
Suy ra 2x≥y2−14>y22x≥y2−14>y2 suy ra x≥y22x≥y22 (3)
Mà y3+z3≥x2y3+z3≥x2 suy ra y3+1≥x2y3+1≥x2
Lại từ (3) ta có x2≥y44x2≥y44 
Từ đó suy ra y3+1≥x2≥y44y3+1≥x2≥y44 
(2x)32≥y3(2x)32≥y3
Ta có bất phương trình (2x)32+1≥x3(2x)32+1≥x3 
Suy ra x≤2x≤2 
Đến đây ta sử dụng bất phương trình x≥y22x≥y22 rồi tìm ra nn 

Bình luận (0)
chien Nguyen
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 14:46

\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)

\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)

Ta có:

\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)

Đẳng thức xảy ra khi và chỉ khi:

\(x^2=y^2+5=z\)

Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)

\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)

Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:

\(\left(x;y;z\right)=\left(3;2;9\right)\)

Bình luận (0)
michelle holder
Xem chi tiết
Akai Haruma
22 tháng 3 2017 lúc 0:49

Lời giải:

Từ \(x^3+y^3+z^3=nx^2y^2z^2\Rightarrow n=\frac{x}{y^2z^2}+\frac{y}{x^2z^2}+\frac{z}{x^2y^2}\)

Gọi \(x=\max (x,y,z)\)

Ta thấy \(x^2|x^3+y^3+z^3\rightarrow x^2|y^3+z^3\rightarrow y^3+z^3\geq x^2\)

TH1: \(x>y^2z^2\)

\(\Rightarrow y^3+z^3>y^4z^4\Leftrightarrow y^3(1-\frac{yz^4}{2})+z^3(1-\frac{y^4z}{2})>0 \)

Nếu \(yz\geq 2\) thì điều trên hoàn toàn vô lý. Suy ra \(yz\leq 1\rightarrow y=z=1\)

\(\Rightarrow x^3+2=nx^2\rightarrow x^2|2\rightarrow x=1\), ta thu được \(n=3\)

TH2: \(x< y^2z^2\)

Khi đó \(n=\frac{x}{y^2z^2}+\frac{y}{x^2z^2}+\frac{z}{x^2y^2}\leq \frac{3x}{y^2z^2}<3\)

\(\Rightarrow n=1,2\)

Ta sẽ thử xem hai giá trị này có thỏa mãn không.

Với \(n=1\) \(\Rightarrow x^3+y^3+z^3=x^2y^2z^2\)

Cho \(z=1\Rightarrow x=3,y=2\) (biến đổi PT tích) thỏa mãn nên $n=1$ cũng thỏa mãn.

Với \(n=2\) \(\Rightarrow 2=\frac{x}{y^2z^2}+\frac{y}{x^2z^2}+\frac{z}{x^2y^2}<1+\frac{y}{x^2z^2}+\frac{z}{x^2y^2}\)

\(\Rightarrow y^3+z^3\geq x^2y^2z^2\geq y^3z^3\) do $x$ max

\(\Rightarrow (y^3-1)(z^3-1)\leq 1\) nên \((y^3-1)(z^3-1)=0,1\)

Dễ thấy \((y^3-1)(z^3-1)=1\) không thỏa mãn nên \((y^3-1)(z^3-1)=0\). nên tồn tại một số bằng $1$, giả sử là $y=1$

Bên trên vừa chỉ ra được \(y^3+z^3\geq x^2y^2z^2\Rightarrow z^3+1\geq x^2z^2\geq z^4\)

\(\Rightarrow 1\geq z^3(z-1)\rightarrow z=1\)

Thay vào PT ban đầu ta không thu được nghiệm $x$ thỏa mãn

Vậy \(n\in\left\{1,3\right\}\)

P/s: Bài này là 1 bài trong China TST 1987, nó là toán olympiad nên để trong box toán 9 không hợp lý

Trên mạng tất nhiên đã có lời giải cho bài toán này, nói chung là ý tưởng cũng xêm xêm nhau.

Đây là bài làm của mình từ năm lớp 10, ý tưởng hoàn toàn độc lập, coi như mình cũng chỉ "viết lại" thôi.

Bình luận (1)
Lightning Farron
21 tháng 3 2017 lúc 23:03

Từ điều kiện dễ dàng suy ra \(x^3+y^3\ge z^2\)

Không mất tính tổng quát giả sử \(x\le y\le z\)

Ta có: \(z=nx^2y^2-\frac{x^3+y^3}{z^2}\ge nx^2y^2-(x+y)\)

Do \(x^3+y^3=(x+y)(x^2-xy+y^2)\leq (x+y)y^2\)

\(\Rightarrow n^2x^4y^4<2nx^2y^2(x+y)+x^3+y^3\)

\(nxy<2(\frac{1}{x}+\frac{1}{y})+\frac{1}{nx^3}+\frac{1}{ny^3} (*)\)

Từ \((*) \Rightarrow x=1\) vì nếu \(x\geq 2\) thì \(y\ge x\ge 2\) vế trái của \((*)\) lớn hơn \(4\) còn vế phải \(\le 3\) (Vô lí)

Vậy \(x=1\) ta có \(ny<2+\frac{2}{y}+\frac{1}{n}+\frac{1}{ny^3} \Rightarrow y\leq3\)

\(x^3+y^3=1+y^3\geq z^2\)

Ta xét \(\left\{{}\begin{matrix}y=1\Rightarrow z=1;n=3\\y=2\Rightarrow z=3;n=1\\y=3\Rightarrow\varnothing\end{matrix}\right.\)

Vậy pt có nghiệm \((x,y,z,n)=(1,1,1,3);(1,2,3,1)\)

Bình luận (2)
Neet
22 tháng 3 2017 lúc 20:38

..+ _ + ..

Bình luận (0)
LIVERPOOL
Xem chi tiết