\(cho\frac{a}{2}=\frac{b}{3}\left(a.b=2166\right)\)
Tìm a và b
1/ cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng:
a) \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\frac{a.d}{c.b}=\frac{\left(a+b\right).\left(a-b\right)}{\left(c+d\right).\left(c-d\right)}\)
2/ cho a.b=c2 chứng minh: \(\frac{a}{b}=\frac{\left(2.a+3.c\right)^2}{\left(2.c\right)+\left(3.b\right)^2}\)
Cho a.b,c là các số thực thỏa mãn 0<a,b,c<1 và ab+bc+ca=1.
Tìm GTNN của P=\(\frac{a^2\left(1-b\right)}{b}+\frac{b^2\left(1-c\right)}{c}+\frac{c^2\left(1-a\right)}{a}\)
a) \(\frac{ab+b^2}{\left(a-1\right)^2}\) b) \(\frac{1+ab^2}{\left(a-2\right)\left(b+5\right)}\) c)\(\frac{\left(a+b^2\right)\left(a-2\right)}{a.b^2\left(a-1\right)}\) d) \(\frac{a^2b+b^3}{ab-a^2}\)
a) Biểu thức trên không có nghĩa khi \(\left(a-1\right)^2=0\)\(\Leftrightarrow a=1\)
b) Khi \(\orbr{\begin{cases}a-2=0\\b+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\b=-5\end{cases}}\)
c) Khi \(a=0\)hoặc \(a=1\)hoặc \(b=0\)
d) Khi \(ab-a^2=0\)\(\Leftrightarrow a\left(b-a\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=b\end{cases}}\)
1/ cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng:
a) \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b)\(\frac{a,d}{c.b}=\frac{\left(a+b\right).\left(a-b\right)}{\left(c+d\right).\left(c-d\right)}\)
2/ cho \(a.b=c^2\)chứng minh : \(\frac{a}{b}=\frac{\left(2a+3c\right)^2}{\left(2c+3b\right)^2}\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
tìm các số tự nhiên a,b biết\(\frac{a^3+b^3}{2}\)là số nguyên tố và\(a^3+b^3=\left(a+b\right)^2.\left(a^2-a.b+b^2\right)\)
cho a,b>0 và a.b=1. Tìm giá trị nhỏ nhất của biểu thức
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}+1-1\ge\left(a+b+1\right)2\sqrt{\left(ab\right)^2}+\frac{\left(2+1\right)^2}{a+b+1}-1\)
\(=2\left(a+b+1\right)+\frac{9}{a+b+1}-1\ge2\sqrt{ab}+1+2\sqrt{\frac{9\left(a+b+1\right)}{a+b+1}}-1\ge2+6=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=b^2\left(1\right)\\\frac{2}{a+b}=1\left(2\right)\\a+b+1=\frac{9}{a+b+1}\left(3\right)\end{cases}}\)
pt \(\left(1\right)\)\(\Leftrightarrow\)\(a=b\) ( vì a, b > 0 )
pt \(\left(2\right)\)\(\Leftrightarrow\)\(a=b=1\)
pt \(\left(3\right)\)\(\Leftrightarrow\)\(\left(a+b+1\right)^2=9\)\(\Leftrightarrow\)\(a+b+1=3\) ( đúng vì \(a=b=1\) )
Vậy GTNN của \(A\) là \(8\) khi \(a=b=1\)
Chúc bạn học tốt ~
cho a,b>0 và a.b=1. Tìm giá trị nhỏ nhát của biểu thức:
A=\(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
em mới lớp 7 nên không rành lắm về bất đẳng thức ạ :((
Ta có :\(a.b=1< =>a=\frac{1}{b}\)
Áp dụng bất đẳng thức :
Ta được \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\ge\left(a+b+1\right)\left(2ab\right)+\frac{4}{a+b}\)
\(=\left(a+b+1\right).2+\frac{4}{a+b}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số không âm
\(2\left(a+b+1\right)+\frac{4}{a+b}\ge2\sqrt[2]{\left[2\left(a+b\right)+2\right].\frac{4}{a+b}}\)
\(=2\sqrt[2]{\frac{8\left(a+b\right)+8}{a+b}}=2\sqrt[2]{\frac{8\left(\frac{1}{b}+b\right)+8}{\frac{1}{b}+b}}\left(+\right)\)
Áp dụng bất đẳng thức Cauchy cho 2 số không âm :
\(\frac{1}{b}+b\ge2\sqrt[2]{\frac{1}{b}.b}=2\)
Khi đó \(\left(+\right)< =>2\sqrt[2]{\frac{8.2+8}{2}}=2\sqrt[2]{12}=\sqrt[2]{48}\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=1\)
Vậy \(Min_A=\sqrt{48}\)khi \(a=b=1\)
Baif1, Tìm các số a,b,c biết
a,\(a.\left(a-b\right)=24\)và\(b.\left(a-b\right)=-40\)
b,\(a.b=\frac{-1}{3},b.c\frac{1}{2},c.a=\frac{-3}{8}\)
Mk cần gấp, các bạn giúp mk nha
a,Theo gt, ta có :\(a.\left(a-b\right)-b.\left(a-b\right)=64\Rightarrow\left(a-b\right)^2=64\Rightarrow\)\(\Rightarrow a-b=8\left(1\right)\)
Lại có:\(a.\left(a-b\right)+b.\left(a-b\right)=-16\Rightarrow\left(a+b\right).\left(a-b\right)=-16.\left(2\right)\)\(Thay:a-b=8\)vào \(\left(2\right)\) ta được:
\(\left(a+b\right).8=-16\Rightarrow a+b=-2\left(3\right)\)
Từ \(\left(1\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}a=3\\b=-5\end{cases}}\)
b, Theo gt, ta có :\(a.b.b.c.c.a=\frac{1}{16}\Rightarrow\left(a.b.c\right)^2=\frac{1}{16}\Rightarrow a.b.c=\frac{1}{4}\)\(\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-\frac{2}{3}\\c=-\frac{3}{4}\end{cases}}\)
Cho\(\frac{a}{b}=\frac{c}{d};\left(a,b,c,d,\right)\)chứng minh\(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Vì \(\frac{a}{b}=\frac{c}{d}\) nên ad=bc và \(\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}\)(1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(2)
Từ (1) và (2), ta suy ra: \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\).Chứng minh:
\(\frac{a.b}{c.d}=\frac{a^2+b^2}{c^2+d^2}\); \(\frac{\left(a+b\right)^3}{\left(c+d\right)^3}=\frac{a^3+b^3}{c^3+d^3}\)