Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Đình Thuận
Xem chi tiết
Nguyễn Thảo Nguyên
Xem chi tiết
Bimbim
11 tháng 8 2020 lúc 15:42

Kết quả là 25

Khách vãng lai đã xóa
lily
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết
Bùi Anh Tuấn
Xem chi tiết
nub
18 tháng 8 2020 lúc 15:17

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)

\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)

\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))

\(\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)

Khách vãng lai đã xóa
nub
18 tháng 8 2020 lúc 15:31

\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)

\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)

Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức

Bài tiếp theo cũng làm tương tự

Khách vãng lai đã xóa
Lương Thu Hà
Xem chi tiết
Nguyễn Ngô Minh Trí
30 tháng 10 2017 lúc 20:20

Xin lỗi online math em lỡ spam rồi đừng trừ diem a

Nguyễn Anh Khoa
Xem chi tiết
Sakura
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 8 2019 lúc 22:47

1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)(đk :\(x\ge\frac{2}{3}\)) (1)

Đặt \(4x+1=a\left(a\ge0\right)\) , \(3x-2=b\left(b\ge0\right)\)

\(a-b=4x+1-3x+2=x+3\)

=> \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)

<=> \(5\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)

<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)=0\)

=> \(\sqrt{a}-\sqrt{b}=0\)(vì \(\sqrt{a}+\sqrt{b}+5\ge5\) do a,b\(\ge0\))

<=> \(\sqrt{a}=\sqrt{b}\) <=>\(4x+1=3x-2\) <=> \(x=-3\)(k tm đk)

Vậy pt (1) vô nghiệm

Lê Thị Thục Hiền
23 tháng 8 2019 lúc 23:23

1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) (1) (đk: \(x\ge\frac{2}{3}\))

Đặt \(4x+1=a\left(a\ge0\right)\) ,\(3x-2=b\left(b\ge0\right)\)

=> \(a-b=4x+1-3x+2=x+3\)

\(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)

<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(5-\sqrt{a}-\sqrt{b}\right)=0\)

=> \(\left[{}\begin{matrix}\sqrt{a}=\sqrt{b}\\5=\sqrt{a}+\sqrt{b}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}4x+1=3x-2\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-3\left(ktm\right)\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)

=> 25=4x+1+3x-2+\(2\sqrt{\left(4x+1\right)\left(3x-2\right)}\)

<=> 26-7x=2\(\sqrt{12x^2-5x-2}\)

<=> \(676-364x+49x^2=48x^2-20x-8\)

<=> \(676-364x+49x^2-48x^2+20x+8=0\)

<=> \(x^2-344x+684=0\)

<=> \(x^2-342x-2x+684=0\)

<=> \(x\left(x-342\right)-2\left(x-342\right)=0\)

<=> (x-2)(x-342)=0

=> \(\left[{}\begin{matrix}x=2\left(tm\right)\\x=342\left(ktm\right)\end{matrix}\right.\)

Vậy pt (1) có nghiệm x=2

Võ Hồng Phúc
26 tháng 10 2019 lúc 14:42

Violympic toán 9

Khách vãng lai đã xóa
Đinh Diệp
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 6 2019 lúc 18:41

Phương trình có vô số nghiệm

Nếu thay \(\sqrt{y-2008}\) bằng \(\sqrt{y+2008}\) thì phương trình có bộ nghiệm duy nhất: \(\left(x;y;z\right)=\left(2010;-2007;3\right)\)