Tìm x thuộc N để A=1!+2!+3!+...+x! là 1 số chính phương
Tìm x thuộc Z để
x^2+4x+12 là số chính phương
x^2-8x+12 là số chính phương
x^2+x+1 là số chính phương
x^2+3 là số chính phương
1) CMR: A= 999...9800...0 1 là số chính phương
n chữ số 9 n c/số 0
2) Tìm n thuộc N để n^2+5 là số chính phương
3) Tìm n thuộc N* để n^2-2n+8 là số chính phương
tìm x thuộc tập hợp N để:
a) N - 3 và x + 20 là số chính phương
b) n2 + 101 là một số chính phương
c) n2 - 59 là số chính phương
Tìm x để A =1!+2!+3!+...+x! là số chính phương.biết x thuộc N*
Bạn sẽ biết A khi xem lời giải sách các dạng trang 67 nhé ok
Bài 1: Tìm n thuộc N để:
A= n^2+9 là số chính phương
B= n^2+2014 là số chính phương
C= n(n+3) là số chính phương
Bài 2: CMR: a^2-1 chia hết cho 24 với a là số nguyên tố >3
Bài 3: CMR: n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)
<=> 9=m2-n2
<=> 9=(m-n)(m+n)
Vì n thuộc N => m-n thuộc Z, m+n thuộc N
=> m-n,m+n thuộc Ư(9)
mà m+n>m-n
nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)
Vậy A là SCP <=>n=4
Tìm n thuộc N để A=1!+2!+3!+...+n! là số chính phương .
Vì n thuộc N* => n thuộc {1;2;3;4;...}
Ta xét các trường hợp sau :
+ nếu n=1
Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )
+ nếu n=2
Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)
+Nếu n=3
khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)
+Với n>hoặc=4
Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3
Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0
=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)
Mà số chính phương không thể có chữ số tận cùng là 3
Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)
Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương
(+) Với n = 1
=> A=1 ( là số chính phương )
(+) Với n = 2
=> A = 3 ( không phải là số chính phương )
(+) ......
(+) Với \(n\ge4\)
Ta có : 1! + 2! + 3! + 4! = 33 có tận cúng là mà .
Mặt khhacs các số 5! ; 6! ; ... luôn có tận cùng = 0
=> A có tận cung là 3
Mà số chính phương không bao giờ có tận cùng là 3 .
=> n = 1
Vậ n = 1
Với n =1 thì 1! =1=1^2 là số chính phương
Với n=2 thì 1! +2! =3 không là số chính phương
Với n=3 thì 1!+2!+3!=1+1.2 +1.2..3=9=3^2 là số chính phương
n=4 tận cùng là 3 nên không là số chính Phương
Vậy N=1 và 3
Tìm x thuộc N để :
a) x2+65 là số chính phương
b)x-13 và x+12 là số chính phương
c)x+51 và x-38 là số chính phương
MỌI NGƯỜI GIÚP MÌNH BÀI NÀY VỚI
1.Tìm x,y thuộc N để 2x + 5y là số chính phương
2.Gỉa sử 2n+1 và 3n+1 là số chính phương. CMR: 5n+3 là hợp số với n thuộc N*
Tra loi
Bn len google tra cho nhanh
Mk ns tht day
Hok tot Hien
tìm x thuộc N để giá trị biểu thức x^2+3x+1 là số chính
phương
Do \(x^2+3x+1\) là số chính phương nên \(x^2+3x+1=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4x^2+12x+4=4a^2\)
\(\Leftrightarrow\left[\left(2x\right)^2+2.2x.3+3^2\right]-4a^2-5=0\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2a\right)^2=5\)
\(\Leftrightarrow\left(2x-2a+3\right)\left(2x+2a+3\right)=5\)
Do x;a nguyên nên \(2x-2a+3\) và \(2x+2a+3\) là ước của 5
\(Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
Với \(2x-2a+3=1\) thì \(2x+2a+3=5\) => \(\left(a;x\right)=\left(1;0\right)\) (TM)
Với \(2x-2a+3=5\) thì \(2x+2a+3=1\) => \(\left(a;x\right)=\left(-1;0\right)\) (TM)
Với \(2x-2a+3=-1\) thì \(2x+2a+3=-5\) => \(\left(a;x\right)=\left(-1;-3\right)\) (loại)
Với \(2x-2a+3=-5\) thì \(2x+2a+3=-1\) => \(\left(a;x\right)=\left(-3;-1\right)\) (loại)
Vậy \(x=0\)