Chứng minh rằng : 165+2^15chia hết cho 33
Chứng minh rằng B = 16 5 + 2 15 chia hết cho 33.
Chứng minh rằng B = 16 5 + 2 15 chia hết cho 33
Sơ đồ con đường |
Lời giải chi tiết |
|
B = 16 5 + 2 15 = 2 4 5 + 2 15 = 2 20 + 2 15 = 2 15 2 5 + 1 = 2 15 .33 Áp dụng tính chất chia hết của một tích ta có: 33 ⋮ 33 ⇒ 2 15 .33 ⋮ 33 ⇒ B ⋮ 33 |
Bài 1: Chứng minh rằng:
a) 165+ 215 chia hết cho 33
b) 88+ 220 chia hết cho 17
c) 4343 - 1717 chia hết cho 10
d) 1 - 2 + 22 - 23 + 24 - 25 + 26 - ... - 22021 + 22022 chia 6 dư 1
Bài 2: Chứng minh rằng:
a) \(\overline{aaa}\) ⋮ 37 b) (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
a, \(\overline{aaa}\) \(⋮\) 37
\(\overline{aaa}\) = a x 111 = a x 3 x 37 ⋮ 37 (đpcm)
b, (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
\(\overline{ab}\) + \(\overline{ba}\) = \(\overline{a0}\) + b + \(\overline{b0}\) + a = \(\overline{aa}\) + \(\overline{bb}\) = a x 11 + b x 11 = 11 x (a+b)⋮11
1 Chứng minh rằng
b,B=165+215 chia hết cho 33
c,C=45+99+180 chia hết cho 9
d,D=2+22+23+...+2^60 chia hết cho 3;7;5
e,E=10n+18n-1 chia hết cho 27
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
Chứng tỏ rằng:
a, 16 5 + 2 15 chia hết cho 33
b, 8 8 + 4 10 chia hết cho 17
a, Ta có 16 5 + 2 15 = 2 4 5 + 2 15 = 2 20 + 2 15 = 2 15 2 5 + 1 = 2 15 . 33 chia hết cho 33
b, Ta có: 8 8 + 4 10 = 2 3 8 + 2 2 10 = 2 24 + 2 20 = 2 20 2 4 + 1 = 2 20 . 17 chia hết cho 17
chứng tỏ rằng:
a) 16 5 + 2 15 chia hết cho 33
b) 8 8 + 4 10 chia hết cho 17
chúng minh rằng (165 +215) chia hết cho 33
165 - 215 = 380
=> 380 ko chia hết cho 33
= > 33 chia hết cho 33
hì hì mik chịu ko chứng minh đc
hok tốt !
Bài 1 – Chứng minh rằng: a) A = 1 + 3 + 32 + ...... + 311 chia hết cho 4. b) B = 165 + 215 chia hết cho 33. c, ∀𝑛 ∈ 𝑁 thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30. d, ∀𝑛 ∈ 𝑁 thì tích (n + 3)(n + 6) chia hết cho 2
a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)
\(=4\left(1+...+3^{10}\right)⋮4\)
Bài 1
a) Viết tổng sau thành 1 tích
3^4+3^5+3^6+3^7
b)Chứng minh rằng
a)A=1+3+3^2+......3^99 chia hết cho 40
Bài 2 Chứng minh rằng
a) A=5+5^2+5^3+.....+5^2004 cha hết cho 6 ,31,156
b)B=165+2^15 chia hết cho 33
Bài 3 Cho M = 1+2+2^2+....+2^200
a)Viết M+1 dưới dạng lũy thừa
b)N=3+3^2+.....+3^2015
Chứng minh rằng 2N+3 là 1 lũy thừa
Bài 1
a) 34 + 35 + 36 + 37 = 34(1 + 3 + 32 + 33)\
b) a)A = 1 + 3 + 32 +......399 =(1 + 3 + 32 + 33 ) + ...+(396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33 ) + .. +396(1 + 3 + 32 + 33 )
= 40 + ... + 396 . 40
= 40 (1 + 3 +...+ 396) chia hết cho 40
Bài 2
a)
+)A chia hết cho 6
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)
\(A=30+5^2.30+...+5^{2002}.30\)
\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6
+)A chia hết cho 31
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)
\(A=155+5^3.155+...+5^{2001}.155\)
\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31
+) A chia hết cho 156
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)
\(A=780+5^4.780+...+5^{2000}.780\)
\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156
b)B=165+2^15 chia hết cho 33
ta có 165 chia hết cho 33
mà 215 ko chia hết cho 33
vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.
chứng tỏ A= 1+\(3^1\)+\(3^2\)+....+\(3^{99}\)là B(4) và là B (40).