tính E=4/3+4/15+4/35+4/63+...+4/399+4/483
Tìm x :
\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
Giải:
\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\dfrac{4}{3.5}+\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{19.21}=\dfrac{x}{49}\)
\(2.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(2.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)=\dfrac{x}{49}\)
\(2.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)=\dfrac{x}{49}\)
\(2.\dfrac{2}{7}=\dfrac{x}{49}\)
\(\dfrac{4}{7}=\dfrac{x}{49}\)
\(\Rightarrow x=\dfrac{4.49}{7}=28\)
Chúc bạn học tốt!
\(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
2 . \(\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{399}=\dfrac{x}{49}\)
2 . \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{19.21}=\dfrac{x}{49}\)
2 . ( \(\dfrac{1}{3}-\dfrac{1}{21}\) ) = \(\dfrac{x}{49}\)
2 . \(\dfrac{2}{7}\) = \(\dfrac{x}{49}\)
=> \(\dfrac{4}{7}=\dfrac{x}{49}\)
=> \(\dfrac{21}{49}=\dfrac{x}{49}\)
=> \(x=21\)
Vậy \(x=21\)
Tìm x :
\(\dfrac{4}{15}\) + \(\dfrac{4}{35}\) + \(\dfrac{4}{63}\) + ... + \(\dfrac{4}{399}\) = \(\dfrac{x}{49}\)
Ta có : \(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\Leftrightarrow2\cdot\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{2}{7}=\dfrac{x}{98}\Rightarrow x=28\)
Vậy $x=28$
Tính nhanh :a) 4/3x7 +4/7x11 +4/11x15 +...+4/ 107x111
b )2/15 +2/35 +2/63 +...+ 2/399
c)1/25x27 +1/27x29 +1/29x31 +...+ 1/73x75
a) A= 4/3.7 + 4/7.11 + 4/11.15 +...+ 4/107.111
b) B= 2/15 + 2/35 +2/63+...+ 2/399
c) C= 1/10 + 1/15 + 1/21+ ...+ 1/120
a.\(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(=\frac{1}{3}-\frac{1}{111}=\frac{37}{111}-\frac{1}{111}=\frac{36}{111}=\frac{12}{37}\)
Vậy A=\(\frac{12}{37}\)
b.\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)
Vậy \(B=\frac{2}{7}\)
c.\(C=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow C.\frac{1}{2}=\left(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\right).\frac{1}{2}\)
\(=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{4}-\frac{1}{16}=\frac{4}{16}-\frac{1}{16}=\frac{3}{16}\)
Vậy \(C=\frac{3}{16}\)
A = \(\frac{4}{3.7}+\frac{4}{7.9}+...+\frac{4}{107.111}\)
A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}\)=\(\frac{12}{37}\)
2 câu sau tương tự. Mik ngại làm lắm -_-
tinh cac tong sau
A= 4/ 3*7+4/7*11+4/11*15 +...+4/107*111
B= 2/15 +2/35+2/63+...+2/399
C= 7/10*11+7/11*12+7/12*13+...+7/69*70
D= 6/15*18+6/18*21+6/21*24+...+6/87*90
E= 3 mu 2/ 8*11+ 3mu2/11*14+3mu2/14*17+...+3 mu2 / 197*200
\(A=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(A=\frac{1}{3}-\frac{1}{111}\)
\(A=\frac{12}{37}\)
mà dài quá bạn ơi ban tách ra thành nhiều câu hỏi đi thế này trả lời lâu lắm
Tính :
\(\dfrac{4}{15}\) + \(\dfrac{4}{35}\) + \(\dfrac{4}{63}\) + ... + \(\dfrac{4}{399}\)
\(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=4.\left(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{399}\right)=4.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{19.21}\right)=4.\left[\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\right]=4.\left[\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\right]=2.\left(\dfrac{7-1}{21}\right)=\dfrac{12}{21}=\dfrac{4}{7}\)
cách giải bài : 1^15+1^35+1^63+1^99+...+1^399+1^483. tính b
Tính B= 4/15+4/35+4/63+4/99+4/143+4/195
dễ lm bạn ơi
B=4/3.5+4/5.7+.........................
Ghi tới đok chắc hỉu roài chứ, tự lm phần sau nhé.
B= 4/3 + 4/15 + 4/35 + 4/63 + 4/99 + 4/143
bạn hỏcais gì vậy mình ko hiểu
b= 4/3 + 4/15 + 4/35 + 4/63 + 4/99 + 4/143
là sao vậy bn
kết quả là
7/41
\(B=\frac{4}{3}+\frac{4}{15}+\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}\)
\(B=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+\frac{4}{11.13}\)
sorry,mình đi ngủ
\(B=\frac{4}{3}+\frac{4}{15}+\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{1}{143}\)
\(B=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+\frac{4}{11.13}\)
\(B\div2=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.11}+\frac{2}{11.13}\)
\(B\div2=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(B\div2=1-\frac{1}{13}=\frac{12}{13}\)
\(B=\frac{12}{13}.2=\frac{24}{13}\)