Không tính hãy so sánh :
A = 1+2+2 mũ 2+ 2 mũ 3+...+ 2 mũ 2009
B = 2 mũ 2010 - 1
A= 2 + 2 mũ 3 + 2 mũ 4 + ... + 2 mũ 2010. Hãy so sánh A với 2 mũ 2022 - 2
\(2A=2^2+2^4+2^5+...+2^{2011}\)
\(\Leftrightarrow A=2^{2011}-2< 2^{2022}-2\)
So sánh
A= 2 mũ 0+ 2 mũ 1+2 mũ 2+ 2 mũ 3+.. 2 mũ 2010 Và B = 2 mũ 2011 -1
\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)
\(A=2^{2011}-1\)
Mà \(B=2^{2011}-1\)
=> A = B
Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)
2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)
2A-A hay A=\(2^{2011}-2^0\)
=\(2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(\Rightarrow\)A=B
Hok tốt nha!!!
`A``=``2^0``+`2^1``+``2^2``+`2^3``+`...`+``2^(2010)`
`2A=2^1+2^2+2^3+2^4+...+2^(2011)`
`2A-A=(2^1+2^2+2^3+2^4+...+2^(2011))-(2^0+2^1+2^2+2^3+...+2^(2010)`
`A=2^(2011)-1`
`A=B`
So sánh: A= 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 2010 và B=2 mũ 2011 -1
A=1/2-1/2 mũ 2+1/2 mũ 3 -1/ 2 mũ 4+...+1/ 2 mũ 99-1/2 mũ 100 . Hãy so sánh A với 1/3
A = 1+2+2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 20 , B = 2 mũ 21. Hãy so sánh A và B
A = 1 + 2 + 22 + ... + 220
2A = 2 + 22 + 23 + ... + 221
2A - A = (2 + 22 + 23 + ... + 221) - (1 + 2 + 22 + ... + 220)
A = 221 - 1 < 221 = B
=> A < B
A = 1 + 2 + 22
+ ... + 220
2A = 2 + 22
+ 23
+ ... + 221
2A - A = (2 + 22
+ 23
+ ... + 221) - (1 + 2 + 22
+ ... + 220)
A = 221
- 1 < 221
= B
=> A < B
k cho mk nha $_$
:D
So sánh 2 mũ 9 / 3 mũ 2010 VÀ 3 mũ 9 / 2 mũ 2010
Ta có : \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1^{2019}=1\)
Vì \(\frac{2^9}{3^{2010}}:\frac{3^9}{2^{2010}}< 1\)
=> \(\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Bài làm :
Cách 1:
Ta có :
\(\frac{2^9}{3^{2010}}\div\frac{3^9}{2^{2010}}=\frac{2^9.2^{2010}}{3^{2010}.3^9}=\frac{2^{2019}}{3^{2019}}=\left(\frac{2}{3}\right)^{2019}< 1\)
\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Cách 2 :
Nhận thấy :
29 < 3932010 > 22010\(\Rightarrow\frac{2^9}{3^{2010}}< \frac{3^9}{2^{2010}}\)
Cho A=1+2+2 mũ 2+2 mũ 3+...+2 mũ 2018 và B= 5.2 mũ 2017
Hãy so sánh A và B
Bài 1 So sánh
72 mũ 45 -72 mũ 44 và 72 mũ 44- 72 mũ 43
Bài 2
a, cho S = 1 + 2 + 2 mũ 2 + 2 mũ 3 ..............+2 mũ 9
Hãy so sánh với 5 x 2 mũ 8
b, Cho A = 3+3+3 mũ 2+3 mũ 3.......... + 3 mũ 100
Tìm số tự nhiên n , biết rằng 2. A.3 mũ n
Gấp gấp gấp 😧😧😧😧😧😧
So sánh : và \(72^{44}-72^{43}\)
Ta có :
\(72^{45}-72^{44}=72^{44}\left(72-1\right)\)
\(72^{44}-72^{43}=72^{43}\left(72-1\right)\)
Vì 7244 > 7243 => 7244 (72-1) > 7243 (72-1)
hay 7245 -7244 > 7244 - 7243
cho a = 1 2 3 4 5 6 7 8 9 hãy so sánh 2012 mũ 9 mũ 9 mũ A và 2013 mũ 2 mũ 9 mũ 9
Giúp mình với, mai kiểm tra rồi ạ!
a) Tính:
S = 10 + 12 + 14 +...+2010
b)
S = 1 + 2 + 3 +...+ 999
c) So sánh: 2 mũ 300 và 3 mũ 200
d) So sánh: 3 mũ 300 và 4 mũ 200
c, \(2^{300}\)và \(3^{200}\)
Ta có
\(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
d, \(3^{300}\)và \(4^{200}\)
Ta có
\(3^{300}=27^{100}\)
\(4^{200}=16^{100}\)
Vì \(16^{100}< 27^{100}\Rightarrow3^{300}>4^{200}\)
a,b mik lười làm quá
a, Ta có: S = 10 + 12 + 14 + ... + 2010
Các số hạng cách đều nhau 2 đơn vị.
Có số số hạng là: ( 2010 - 10 ) / 2 + 1 = 500 (số)
\(\Rightarrow\)S = ( 2010 +10 ) * 500 / 2
\(\Rightarrow\)S = 505000
Vậy S = 505000
b, Ta có: S = 1 + 2 + 3 + ... + 999
Các số hạng cách đều nhau 1 đơn vị.
Có số số hạng là: ( 999 - 1 ) / 1 +1 = 999 (số)
\(\Rightarrow\) S = ( 999 + 1 ) * 999 / 2 = 499500
Vậy S = 499500
c, 2300 và 3200
Ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 9 > 8 > 1 và 100 > 0
\(\Rightarrow\)9100 > 8100
Hay 2300 = 3200
Vậy 2300 = 3200
d, 3300 và 4200
Ta có: 3300 = (33)100 = 27100
4200 = (42)100 = 16100
Vì 27 > 16 > 1 và 100 > 0
\(\Rightarrow\)27100 > 16100
Hay 3300 > 4200
Vậy 3300 > 4200
Xĩn lỗi nha! Câu c phải giải thế này:
2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 1 < 8 < 9 và 100 > 0
\(\Rightarrow\)8100 < 9100
Hay 2300 < 3200
Vậy 2300 < 3200