Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hiên
Xem chi tiết
Việt Bách
Xem chi tiết
Yen Nhi
27 tháng 11 2021 lúc 13:25

Answer:

a. \(-5< x< 5\)

\(\Rightarrow x\in\left\{\pm4;\pm3;\pm2;\pm1;0\right\}\)

Tổng các số nguyên x thoả mãn:

\((-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4\)

\(= (4 - 4) + (3 - 3) + (2 - 2) + (1 - 1) + 0\)

\(=0\)

Khách vãng lai đã xóa
Free Fire
Xem chi tiết
Diệu Anh
20 tháng 2 2020 lúc 9:17

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

Khách vãng lai đã xóa
winx rồng thiên
20 tháng 2 2020 lúc 9:19

la 120

Khách vãng lai đã xóa
Ngọc Lan
20 tháng 2 2020 lúc 9:25

Bài 1 :

Số hạng thứ 20 của biểu thức A là : 1+(20-1).6=115

Ta có biểu thức : 

A=1-7+13-19+25-31+...+109-115

=(1-7)+(13-19)+(25-31)+...+(109-115)  (có tất cả 10 cặp)

=(-6)+(-6)+(-6)+...+(-6)

=(-6).10=-60

Vậy giá trị của biểu thức A là -60.

Chúc bạn học tốt!

#Huyền#

Khách vãng lai đã xóa
Messi
Xem chi tiết
Phạm Minh
Xem chi tiết
Phạm Minh
16 tháng 6 2020 lúc 20:40

Ai giúp em với ạ

Khách vãng lai đã xóa
Nguyễn Linh Chi
16 tháng 6 2020 lúc 21:06

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

Khách vãng lai đã xóa
Nguyễn Linh Chi
16 tháng 6 2020 lúc 21:12

2. \(y^2+1\ge1>0;2x^2+x+1>0\) với mọi x; y 

=> x + 5 > 0 

=>  \(y^2+1=\frac{x+5}{2x^2+x+1}\ge1\)

<=> \(x+5\ge2x^2+x+1\)

<=> \(x^2\le2\)

Vì x nguyên => x = 0 ; x = 1; x = -1 

Với x = 0 ta có: \(y^2+1=5\Leftrightarrow y=\pm2\)

Với x = 1 ta có: \(y^2+1=\frac{3}{2}\)loại vì y nguyên 

Với x = -1 ta có: \(y^2+1=2\Leftrightarrow y=\pm1\)

Vậy Phương trình có 4 nghiệm:...

Khách vãng lai đã xóa
Kaneki Ken
Xem chi tiết
lethihuyen
Xem chi tiết
Joy
14 tháng 3 2020 lúc 19:23

a, x + 2 chia hết cho x^2 - 7

=> (x + 2)(x - 2) chia hết cho x^2 - 7

=> x^2 - 4 chia hết cho x^2 - 7

=> x^2 - 7 + 3 chia hết cho x^2 - 7

=> 3 chia hết cho x^2 - 7

=> x^2 - 7 thuộc Ư(3)

=> x^2 - 7 thuộc {-1; 1; -3; 3}

=> x^2 thuộc {6; 8; 4; 10}

mà x là số nguyên

=> x = 2 hoặc x = -2

Khách vãng lai đã xóa
Khánh Vân Phạm
Xem chi tiết
Trần Đình Tuệ
Xem chi tiết
Phùng Minh Quân
31 tháng 7 2019 lúc 9:32

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)

\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)

Phùng Minh Quân
31 tháng 7 2019 lúc 9:33

à nhầm, \(a=b=c=\frac{4}{3}\) nhé 

bùi thu linh
Xem chi tiết