Số nguyên x không âm để biểu thức P=\(\frac{X^2+X}{X^2+X+1}\)Đạt giá trị nguyên.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Bài 1:Tìm số nguyên x để 5/x+3 đạt giá trị lớn nhất
Bài 2:Tìm số nguyên x để biểu thức A=x-13/x+3 có giá trị nhỏ nhất
Bài 3:Tìm số nguyên x để biểu thức B=7-x/x-5 đạt giá trị lớn nhất
giúp mình với.Mình cảm ơn các bạn
Toán lớp 6
Tìm giá trị nguyên của x để biểu thức A = \(\frac{x^2+2x+5}{x+1}\)đạt giá trị nguyên
\(A=\frac{x^2+2x+5}{x+1}=\frac{\left(x^2+2x+1\right)+4}{x+1}=\frac{\left(x+1\right)^2+4}{x+1}=x+1+\frac{4}{x+1}\)
Để \(A=x+1+\frac{4}{x+1}\) là số nguyên <=> \(\frac{4}{x+1}\) là số nguyên
=> x + 1 \(\inƯ\left(4\right)\) = { - 4; - 2; - 1; 1; 2; 4 }
=> x = { - 5; - 3; - 2; 0; 1; 3 }
Vậy x = { - 5; - 3; - 2; 0; 1; 3 }
Để biểu thức A đạt giá trị nguyên thì phân số \(\frac{x^2+2x+5}{x+1}\)phải đạt giá trị nguyên.
\(\Rightarrow x^2+2x+5⋮x+1\)
\(\Rightarrow x.\left(x+1\right)+2x+5-x⋮x+1\)
\(\Rightarrow x+5⋮x+1\)
\(\Rightarrow\left(x+1\right)+4⋮x+1\)
\(\Rightarrow4⋮x+1\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;+1;+2;+4\right\}\)
\(\Rightarrow x\in\left\{-5;-3;-2;0;+1;+3\right\}\)
vậy \(x\in\left\{-5;-3;-2;0;+1;+3\right\}\)thì A đạt giá trị nguyên
Câu 1
Cho biểu thức A = \(\frac{x^2+3}{x-2}\)
a) TÌm điều kiện của x để giá trị của biểu thức A luôn xác định
b) Với những giá trị nào của x thì biểu thức A nhận giá trị là số âm
c) Tìm tất cả các số nguyên x để biểu thức A nhận giá trị nguyên
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
Tìm giá trị nguyên của x để biểu thức H đạt giá trị nguyên
H= \(\frac{x^4+x^3+x^2+x-29}{x^2+1}\)
\(H=\frac{x^4+x^3+x^2+x-29}{x^2+1}=x^2+x-\frac{29}{x^2+1}\)
Để H nguyên thì \(x^2+1\)phải là ước nguyên dương của 29 hay
\(\left(x^2+1\right)=\left(1;29\right)\)
\(\Rightarrow x=0\)
Cho biểu thức:\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
1. Với giá trị nào của x thì biểu thức A xác định?
2.Tìm giá trị của x để A đạt giá trị nhỏ nhất.
3.Tìm các giá trị nguyên của x để A có giá trị nguyên.
Cho biểu thức A=x^2+3/x-2
a)Tìm điều kiện của x để giá trị của biểu thức A không xác định được
b)với nhứng giá trị nào của x thì biểu thức a nhận giá trị là số âm
c) Tìm tất cả các số nguyên x để biểu thức A nhận giá trị nguyên
Tìm các số nguyên x để biểu thức sau đạt giá trị là số nguyên: \(G=\frac{2x-1}{x^2+2}\)
Tìm số nguyên x để giá trị của biểu thức \(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)đạt giá trị nguyên
\(B+1=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}+1=\dfrac{3\sqrt{x}+2}{\sqrt{x}+3}>0\Rightarrow B>-1\)
\(B-2=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}-2=\dfrac{-7}{\sqrt{x}+3}< 0\Rightarrow B< 2\)
\(\Rightarrow\left[{}\begin{matrix}B=0\\B=1\end{matrix}\right.\)
- Với \(B=0\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\notin Z\) (loại)
- Với \(B=1\Rightarrow2\sqrt{x}-1=\sqrt{x}+3\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)