Tìm x biết :
\(\frac{36}{\left(1-7x\right)}=\frac{\left(1-7x\right)}{49}\)
1) giải phương trình:
a) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x+5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
b) \(\frac{7x+10}{x+1}\left(x^2-x-2\right)-\frac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
c) \(\frac{2x+5}{x+3}+1=\frac{4}{x^2+2x-3}-\frac{3x-1}{1-x}\)
d) \(\frac{13}{2x^2+x-21}+\frac{1}{2x+7}+\frac{6}{9-x^2}=0\)
e) \(\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{x-50}+\frac{50}{x-49}\)
f) \(\frac{1+\frac{x}{x+3}}{1-\frac{x}{x+3}}=3\)
giải pt: a)\(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\) b)\(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\) c)\(\frac{1}{\left(x+29\right)^2}+\frac{1}{\left(x+30\right)^2}=\frac{13}{36}\)
Giải pt
\(\frac{1}{7x+1}+\frac{1}{\sqrt{\left(7x+11\right)\left(9-7x\right)}}=\frac{7}{24}\left(x\inℝ\right)\)
Đặt \(\hept{\begin{cases}\sqrt{7x+11}=a\\\sqrt{9-7x}=b\end{cases}}\)
\(\Rightarrow a^2-b^2=14x+2\)
\(\Rightarrow\frac{2}{a^2-b^2}+\frac{1}{ab}=\frac{7}{24}\)
\(\Leftrightarrow\left(b+7a\right)\left(7b-a\right)=0\)
Làm nhầm phần phân tích nhân tử giờ làm lại cách khác.
Đặt \(7x+11=a\)
\(\Rightarrow7x=a-11\)
\(\Rightarrow\frac{1}{a-10}+\frac{1}{\sqrt{a\left(20-a\right)}}=\frac{7}{24}\)
\(\Leftrightarrow\frac{1}{\sqrt{a\left(20-a\right)}}=\frac{7}{24}-\frac{1}{a-10}\)
\(\Leftrightarrow\frac{1}{a\left(20-a\right)}=\left(\frac{7}{24}-\frac{1}{a-10}\right)^2\)
\(\Leftrightarrow\left(a-18\right)\left(a-16\right)\left(49a^2-630a+200\right)=0\)
PS: Bài giải trên bỏ đi nha
Tìm \(x\), biết :
\((x+\frac{7x}{9})\left(x+\frac{7x}{33}\right)(x+\frac{7x}{33})...\left(x+\frac{7x}{9200}\right)=\frac{186}{25}\)
Tớ biết làm đúng 100%:
\((x\cdot1+x\cdot\frac{7}{9})\left(x\cdot1+x\cdot\frac{7}{20}\right)...\left(x\cdot1+x\cdot\frac{7}{9200}\right)=\frac{186}{25}\)
\(x\cdot\left(1+\frac{7}{9}\right)\cdot x\left(1+\frac{7}{20}\right)\cdot...\cdot x\left(1+\frac{7}{9200}\right)=\frac{186}{25}\)
\(\left(x\cdot x\cdot...\cdot x\right)(\frac{16}{9}+\frac{27}{20}+...+\frac{9207}{9200})=\frac{186}{25}\)
\(\left(x\cdot x\cdot...\cdot x\right)\left(\frac{2\cdot8}{1\cdot9}+\frac{3\cdot9}{2\cdot10}+...+\frac{93\cdot99}{92\cdot100}\right)=\frac{186}{25}\)
\(x^{92}\cdot\frac{2\cdot8\cdot3\cdot9\cdot...\cdot93\cdot99}{1\cdot9\cdot2\cdot10\cdot...\cdot92\cdot100}=\frac{186}{25}\)
\(x^{92}\cdot\frac{\left(2\cdot3\cdot...\cdot93\right)\cdot\left(8\cdot9\cdot...\cdot99\right)}{\left(1\cdot2\cdot...\cdot92\right)\cdot\left(9\cdot10\cdot...\cdot100\right)}=\frac{186}{25}\)
\(x^{92}\cdot\frac{93\cdot8}{100}=\frac{186}{25}\)
\(x^{92}\cdot\frac{186}{25}=\frac{186}{25}\)
\(x^{92}=\frac{186}{25}:\frac{186}{25}\)
\(x^{92}=1\Rightarrow x=1\)
cô tớ giải rồi . x=1 (đúng 100%)
Tìm x :
a) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
b) \(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
c) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
d) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)
a) Qui đồng rồi khử mẫu ta được:
3(3x+2)-(3x+1)=2x.6+5.2
<=> 9x+6-3x-1 = 12x+10
<=> 9x-3x-12x = 10-6+1
<=> -6x = 5
<=> x = -5/6
Vậy ....
b) ĐKXĐ: \(x\ne\pm2\)
Qui đồng rồi khử mẫu ta được:
(x+1)(x+2)+(x-1)(x-2) = 2(x2+2)
<=> x2+3x+2+x2-3x+2 = 2x2+4
<=> x2+x2-2x2+3x-3x = 4-2-2
<=> 0x = 0
<=> x vô số nghiệm
Vậy x vô số nghiệm với x khác 2 và x khác -2
c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)
Vậy ......
d) (x+1)2-4(x2-2x+1) = 0
<=> x2+2x+1-4x2+8x-4 = 0
<=> -3x2+10x-3 = 0
giải phương trình
1. \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
2 . \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
3 . \(4\left(3x-2\right)-3\left(x-4\right)=7x+10\)
4. \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)
<=> 21x - 100x + 900 = 80x + 6
<=> -79x - 80x = 6 - 900
<=> -159x = -894
<=> x = 258/53
Vậy S = {258/53}
2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5
<=> 7x2 + 2x - 7x2 + 14x = -5 + 2
<=> 16x = 3
<=> x = 3/16
Vậy S = {3/16}
3) 4(3x - 2) - 3(x - 4) = 7x+ 10
<=> 12x - 8 - 3x + 12 = 7x + 10
<=> 9x - 7x = 10 - 4
<=> 2x = 6
<=> x = 3
Vậy S = {3}
4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)
<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80
<=> 4x2 + 20x - 4x2 - 32x = -80 - 16
<=> -12x = -96
<=> x = 8
Vậy S = {8}
a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
b)\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
c)\(\frac{x +1}{x-2}+\frac{x-1}{x +2}=\frac{2\left(x^{2^{ }}+2\right)}{x^2-4}\)
d)(2x+3)\(\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
<=> \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
<=> x2+2x-x+2=2
<=> x2+x=2-2
<=> x2+x=0
<=>x(x+1)=0
<=>x=0 hoặc x+1=0
<=>x=0 hoặc x = -1
a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
<=>\(\frac{1.x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
<=> x-3 =10x-15
<=> x-10x= -15+3
<=> -9x = -12
<=> x = \(\frac{-12}{-9}\)
<=> x = \(\frac{4}{3}\)
Giai phuong trinh
\(a,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(b,\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
\(c,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(d,\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(a,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) ĐKXĐ : \(x\ne0;x\ne\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
\(\Leftrightarrow x-3=10x-15\)
\(\Leftrightarrow x-10x=3-15\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow x=\frac{-12}{-9}=\frac{4}{3}\)(TMĐKXĐ)
KL :....
\(b,\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\) ĐKXĐ : \(x\ne0;2\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-x+2=2\)
\(\Leftrightarrow x^2+x=2-2\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
KL ::
\(c,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\) ĐKXĐ : \(x\ne\pm2\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x+x+2+x^2-2x-x+2=2x^2+4\)
\(\Leftrightarrow0x=0\)
KL : PT vô số nghiệm
Tìm GTLN:
\(A=\frac{\sqrt{10x-49}}{2020}\\ B=\frac{\sqrt{2x^2-25}}{2020x^2}\\ C=\frac{7x^8+256}{x^7}\left(x>0\right)\\ D=\frac{\sqrt{x}+6\sqrt{x}+34}{\sqrt{x}+3}\\ E=x+\frac{1}{x-1}\left(x>1\right)\)