Cho tam giác ABC, có AB = AC. H là trung điểm của BC, từ B kẻ BK vuông góc với AC, BK cắt AH tại M. Trên cạnh AB lấy điểm I sao cho AI = AK. Chứng minh AB vuông góc với MI
Bài 4 (3,5 điểm) Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt Bh, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt BH, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt BH, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
c) Ta có \(\Delta ABH=\Delta KBH\left(cmt\right)\)\(\Rightarrow\widehat{ABH}=\widehat{KBH}\)
Do B,H,I thẳng hàng nên \(\widehat{ABI}=\widehat{KBI}\)
Xét \(\Delta ABI\)và \(\Delta KBI\)có:
\(AB=BK\left(gt\right);\widehat{ABI}=\widehat{KBI}\left(cmt\right);\)BI chung
\(\Rightarrow\Delta ABI=\Delta KBI\left(c.g.c\right)\)
\(\Rightarrow AI=KI\)(2 cạnh tương ứng)
\(\Rightarrow\Delta AKI\)cân tại I \(\Rightarrow\widehat{AKI}=\widehat{IAK}\)
Mặt khác vì DK//AI (gt) \(\Rightarrow\widehat{DKA}=\widehat{IAK}\)(2 góc so le trong)
\(\Rightarrow\widehat{AKI}=\widehat{DKA}\left(=\widehat{IAK}\right)\)\(\Rightarrow\)KA là tia phân giác của \(\widehat{IKD}\)
Cho tam giác ABC vuông tại a ( AB<AC ) . trên cạnh BC lấy điểm K sao cho AB=BK. Gọi H là trung điểm của AK . kéo dài BH cắt AC tại I .
a . CMR tam giác ABH =tam giác kBH . từ đó suy ra Ak vuông góc với BI
b.Qua k kẻ dg thg song song với AC, cắt BH , AB lần khọt tại N, D .CM : KA là tia phân giác của góc IKF
C . kẻ M vuông góc với BC tại M . CMR: A,N , M thẳng hàng.
Giúp mik nha đang gấp ❤️
a: Xét ΔABH và ΔKBH có
BA=BK
BH chung
HA=HK
Do đó: ΔBAH=ΔBKH
=>\(\widehat{BHA}=\widehat{BHK}\)
mà \(\widehat{BHA}+\widehat{BHK}=180^0\)(hai góc kề bù)
nên \(\widehat{BHA}=\widehat{BHK}=\dfrac{180^0}{2}=90^0\)
=>BH\(\perp\)AK tại H
=>AK\(\perp\)BI tại H
b: Sửa đề: KA là phân giác của góc IKD
Xét ΔIAK có
IH là đường trung tuyến
IH là đường cao
Do đó: ΔIAK cân tại I
Ta có: DK//AC
=>\(\widehat{DKA}=\widehat{KAI}\)
mà \(\widehat{KAI}=\widehat{IKA}\)(ΔIAK cân tại I)
nên \(\widehat{DKA}=\widehat{IKA}\)
=>KA là phân giác của góc DKI
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I.
a) Nếu góc ABC bằng 60°. Tính số đo góc ACB.
b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI.
c) Qua K kẻ đường thẳng song song với AC, cắt Bh, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD.
d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Cho tam giác ABC, có AB = AC. H là trung điểm của BC, từ B kẻ BK vuông góc với AC, BK cắt AH tại M. Trên cạnh AB lấy điểm I sao cho AI = AK. Chứng minh AB vuông góc với MI
Bài này dễ, ko khó đâu bn
Xét \(\Delta\)ABH và \(\Delta\)ACH có:
AB = AC (giả thiết)
BH = CH (H là tđ của BC)
AH chung
=> \(\Delta\)ABH = \(\Delta\)ACH (c.c.c)
=> \(\widehat{BAH}\) = \(\widehat{CAH}\) (2 góc tương ứng)
hay \(\widehat{IAM}\) = \(\widehat{KAM}\)
Xét \(\Delta\)AIM và \(\Delta\)AKM có:
AI = AK (gt)
\(\widehat{IAM}\) = \(\widehat{KAM}\) (c/m trên)
AM chung
=> \(\Delta\)AIM = \(\Delta\)AKM (c.g.c)
=> \(\widehat{AIM}\) = \(\widehat{AKM}\) (2 góc t/ư)
mà BK \(\perp\) AC nên \(\widehat{AKM}\) = 90o
=> \(\widehat{AIM}\) = 90o
Do đó AB \(\perp\) MI \(\rightarrow\) đpcm.
Muốn chứng minh vuông góc thì bạn có thể chứng minh sao cho có số đo là 90 độ là ra liền hà!(bạn cứ suy nghĩ là ra thôi)
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I.
a) Nếu góc ABC bằng 60°. Tính số đo góc ACB.
b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI.
c) Qua K kẻ đường thẳng song song với AC, cắt Bh, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD.
d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
[vẽ hình nữa nka:<]
Cho tam giác ABC , Mlà trung điểm của BC , Trên tia đổi của tia MA lấy điểm K sao cho MK = MA a ) Chứng minh tam giác ABC = tam giác KMB b) Chứng minh AC//BK c ) từ M kẻ MH vuông góc với AC ( H thuộc AC ) , kẻ MI vuông góc với BK ( I thuộc BK) . Chứng minh MH = MI d) Trên nửa mặt phẳng không chứa C có bờ AB , vẽ tia Ax vuông góc với AB , trên ta đó lấy điểm D sao cho A = AB . Trên nửa mặt phẳng ko chứa tia B có bờ AC , vẽ tia Ay vuông góc với AC , trên tia đó lấy điểm E sao cho AE = AC , Chứng minh rằng AM = DE/2
b: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
Suy ra: AC//BK
Cho tam giác ABC vuông tại A Trên tia đối của tia AC lấy điểm K sao cho AK = AC AH Cho AB = 8 cm AC = 6 cm Tính độ dài cạnh BC b Chứng minh BK bằng BC c so sánh hai góc nhọn b và c d kể km vuông góc với BC K M cắt ba tại H chứng minh ch vuông góc với BC CA