CMR :
Nếu n là 1 số chẵn thì đồng thời \(n^3-4n\)và \(n^3+4n\)chia hết cho 16
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)
vì n chẵn nên đặt n=2k
\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)
vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2
=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16
\(n^3+4n=n^3-4n+8n\)
đặt n=2k
=>\(8\left(k-1\right)k\left(k+1\right)+16k\)
mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
Cho n là một số tự nhiên chẵn. CMR \(n^3-4n\) và \(n^3+4n\)đều chia hết cho 16
cho n là số chẵn . Chứng tỏ rằng n3-4n và n3+4n đều chia hết cho 16
cho n chẵn
cmr n^3+4n chia hết 16
cho n là số chẵn .chứng minh n^3-4 và n^3+4n chia hết cho 16
CMR: với mọi số nguỵên n chẵn và lớn hơn 4 thì:
\(n^4-4n^3-4n^2+16n\) chia hết cho 384
Ta phân tích biểu thức đã cho ra nhân tử :
\(A=n^4-4n^3-4n^2+16n\)
\(=\left[n^4-4n^3\right]-\left[4n^2-16n\right]=n^3(n-4)-4n(n-4)\)
\(=n(n-4)\left[n^2-4\right]=n(n-2)(n+2)(n-4)\)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : \(A=(2k+2)(2k)(2k+4)(2k-2)\)
\(=16k(k-1)(k+1)(k+2)=16(k-1)(k)(k+1)(k+2)\)
Ta nhận thấy \((k-1)(k)(k+1)(k+2)\)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Mình làm gọn 1 xíu nhé
Ta có
\(x^4-4x^3-4x^2+16x=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)
Đây là tích của 4 số chẵn liên tiếp nên sẽ có 2 số chia hết cho 2, 1số chia hết cho 4, 1 số chia hết cho 8. Nên tích này chia hết cho 27.
Trong 3 số chẵn liên tiếp sẽ có 1 số chia hết cho 3
Vì 3 và 27 là nguyên tố cùng nhau nên
Tích chia hết cho 3.27 = 384
CMR : Các số có dạng : n4 -4n3 -4n2 + 16n thì chia hết cho 384 ( với n chẵn và n>4)
CMR: n4 - 4n3 - 4n2 + 16n chia hết cho 384 với mọi n là số chẵn; n > 2
Ta có 384 = 3.128 và (3; 128) = 1 Lại có n chẵn và n > 4 n = 2k ( k N, k > 2) A = n4 – 4n3 – 4n + 16n = 16k4 – 32k3 – 16k2 + 32k = 16k(k3 – 2k2 – k + 2) = 16k(k – 2)(k – 1)(k + 1) Mà k, k – 2, k – 1, k + 1 là 4 số nguyên liên tiếp nên luôn có một số chia hết cho 2 và một số chia hết cho 4. k(k – 2)(k – 1)(k + 1) 8 A 16.8 hay A 128 Mặt khác ba trong 4 số nguyên liên tiếp k, k – 2, k – 1, k + 1 phải có một số chia hết cho 3 nên A 3 mà (3; 128) = 1 nên A 384. Vậy A = n4 – 4n3 – 4n2 + 16n 384 với mọi n chẵn và n > 4
bạn chứng minh tương tự như trên nhé tha số thôi
Do n là số chẵn => n = 2.k (k > 1)
Ta có:
n4 - 4n3 - 4n2 + 16n
= (2k)4 - 4.(2k)3 - 4.(2k)2 + 16.2k
= 24.k4 - 4.23.k3 - 4.22.k2 + 32k
= 16.k4 - 32k3 - 16k2 + 32k
= 16k3.(k - 2) - 16k.(k - 2)
= (k - 2).(16k3 - 16k)
= (k - 2).16k.(k2 - 1)
= 16.(k - 2)(k - 1).k.(k + 1)
Vì (k - 2).(k - 1).k.(k + 1) là tích 4 số tự nhiên liên tiếp nên (k - 2).(k - 1).k.(k + 1) chia hết cho 3 và 8
Mà (3;8)=1 => (k - 2).(k - 1).k.(k + 1) chia hết cho 24
=> 16.(k - 2).(k - 1).k.(k + 1) chia hết cho 384
=> n4 - 4n3 - 4n2 + 16n chia hết cho 384 (đpcm)