Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Nguyễn Bảo Anh

CMR: n4 - 4n3 - 4n2 + 16n chia hết cho 384 với mọi n là số chẵn; n > 2

 

Nguyễn Lan Hương
8 tháng 9 2016 lúc 21:31

Ta có 384 = 3.128 và (3; 128) = 1 Lại có n chẵn và n > 4  n = 2k ( k  N, k > 2)  A = n4 – 4n3 – 4n + 16n = 16k4 – 32k3 – 16k2 + 32k = 16k(k3 – 2k2 – k + 2) = 16k(k – 2)(k – 1)(k + 1) Mà k, k – 2, k – 1, k + 1 là 4 số nguyên liên tiếp nên luôn có một số chia hết cho 2 và một số chia hết cho 4.  k(k – 2)(k – 1)(k + 1)  8  A  16.8 hay A  128 Mặt khác ba trong 4 số nguyên liên tiếp k, k – 2, k – 1, k + 1 phải có một số chia hết cho 3 nên A  3 mà (3; 128) = 1 nên A  384. Vậy A = n4 – 4n3 – 4n2 + 16n 384 với mọi n chẵn và n > 4

bạn chứng minh tương tự như trên nhé tha số thôi leu

soyeon_Tiểubàng giải
8 tháng 9 2016 lúc 22:56

Do n là số chẵn => n = 2.k (k > 1)

Ta có:

n4 - 4n3 - 4n2 + 16n

= (2k)4 - 4.(2k)3 - 4.(2k)2 + 16.2k

= 24.k4 - 4.23.k3 - 4.22.k2 + 32k

= 16.k4 - 32k- 16k2 + 32k

= 16k3.(k - 2) - 16k.(k - 2)

= (k - 2).(16k3 - 16k)

= (k - 2).16k.(k2 - 1)

= 16.(k - 2)(k - 1).k.(k + 1)

Vì (k - 2).(k - 1).k.(k + 1) là tích 4 số tự nhiên liên tiếp nên (k - 2).(k - 1).k.(k + 1) chia hết cho 3 và 8

Mà (3;8)=1 => (k - 2).(k - 1).k.(k + 1) chia hết cho 24

=> 16.(k - 2).(k - 1).k.(k + 1) chia hết cho 384

=> n4 - 4n3 - 4n2 + 16n chia hết cho 384 (đpcm)


Các câu hỏi tương tự
Đỗ Hoàng Ngọc
Xem chi tiết
Đồng Hồ Cát 3779
Xem chi tiết
Đặng Khánh Ngọc
Xem chi tiết
Xem chi tiết
Đỗ Nguyễn Bảo Anh
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Lưu Thị Thảo Ly
Xem chi tiết
Slendrina
Xem chi tiết
Duyên Nấm Lùn
Xem chi tiết