Cho hình thang ABCD (AB//DC). E là trung điểm AD. Kẻ EF//AB. Chứng minh BF=FC. Nối AC cắt EF tại I
Cho hình thang ABCD là hình thang cân (AD // BC). Lấy điểm E , F lần lượt là trung điểm của AB, CD.
a) Tứ giác EFCB là hình gì? Vì sao?
b) BD cắt EF tại I. Chứng minh I là trung điểm của BD
c) AC cắt EF tại J. Chứng minh JA = JC và EI = FJ.
b: Xét ΔBAD có
E là trung điểm của AB
EI//AD
Do đó: I là trung điểm của BD
cho hình thang ABCD (AB//CD) có E là trung điểm của AD, từ E kẻ đường thẳng song song với AB cắt BC tại F
a,biết AB=8cm, EF-10cm,tính CD
b, kẻ đường chéo AC cắt EF tại I,tính IE
cho hình thang ABCD ( AB// CD) có E là trung điểm của AD từ E kẻ đường thẳng song song với AB cắt BC tại F
a, Biết AB =8cm EF =10cm tính CD?
b, kẻ đường chéo AC cắt EF Tại I tính IE ?
a: Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: \(EF=\dfrac{AB+CD}{2}\)
hay CD=12cm
Cho hình thang ABCD đáy nhỏ AB, E là trung điểm AD, F là trung điểm BC. Đường thẳng EF cắt BD ở I và cắt AC ở K.
a) Chứng minh EF // AB // DC.
b) Chứng minh BK là đường trung tuyến của ∆ABC.
c) Chứng minh AB = 2EI.
d) Chứng minh EI = KF.
e) Cho AB = 6, CD = 10. Tính IE; KF; IK?
\(a,\left\{{}\begin{matrix}AE=ED\\BF=FC\end{matrix}\right.\Rightarrow EF\) là đtb hthang ABCD
\(\Rightarrow EF=\dfrac{AB+CD}{2};EF//AB//CD\left(đpcm\right)\)
\(b,\left\{{}\begin{matrix}BF=FC\\FK//AB\left(EF//AB\right)\end{matrix}\right.\Rightarrow AK=KC\) hay BK là trung tuyến tg ABC
\(c,\left\{{}\begin{matrix}AE=ED\\EI//AB\left(EF//AB\right)\end{matrix}\right.\Rightarrow BI=ID\Rightarrow IE\) là đtb tg ABD
\(\Rightarrow IE=\dfrac{1}{2}AB.hay.AB=2IE\)
\(d,\left\{{}\begin{matrix}BF=FC\\AK=KC\end{matrix}\right.\Rightarrow FK\) là đtb tg ABC
\(\Rightarrow FK=\dfrac{1}{2}AB=IE\left(đpcm\right)\)
\(e,\) Ta có \(FK=IE=\dfrac{AB}{2}=3\)
\(KF=EF-EI-FK=\dfrac{AB+CD}{2}-3-3=8-3-3=2\)
Cho hình thang ABCD (AB // CD), E là trung điểm của AD, F là trung điểm của BC. Đường thẳng EF cắt trung điểm của AD, F là trung điểm của BC. Đường thẳng EF cắt BD tại I, cắt AC ở K. AK=KC ; BI = ID. Chứng minh rằng: IK = CD/2 - AB/2
Cho hình thang ABCD( đáy AB và CD ), E là trung điểm của AD, F là trung điểm của BC, EF cắt tại M
a) Chứng minh: AM= MC
b) Cho AB = EM= 2cm, tính x=MF và y= DC?
a: Hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AB//CD
Xét ΔADC có
E là trung điểm của AD
EM//DC
Do đó: M là trung điểm của AC
hay MA=MC
Cho hình bình hành ABCD. Trên đường chéo AC lấy các điểm E,F sao cho AE=EF=FC
a)Chứng minh tứ giác BEDF là hình bình hành
b)DF cắt BC tại M. Chứng minh DF=2FM
c)BF cắt DC tại I và DE cắt AB tại J
Chứng minh I,O,J thẳng hàng
Cho hình thang ABCD là hình thang cân (AD//BC). Lấy điểm E, F lần lượt là trung điểm của AB, CD a) Tứ giác EFCB là hình gì? Vì sao? b) BD cắt È tại I. Chứng minh I là trung điểm của BD c) AC cắt EF tại J. Chứng minh JA = JC và EI = FJ
a: Xét hình thang ABCD có
E là trung điểm của AB
F là trung điểm của DC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AD//BC
Xét tứ giác EFCB có EF//BC
nên EFCB là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên EFCB là hình thang cân
Cho hình bình hành ABCD. Trên đường chéo AC lấy 2 điểm E, F sao cho AE = EF = FC. Gọi O là giao điểm của AC và BD. DF cắt BC tại M.
a) Chứng minh tứ giác BEDF là hình bình hành.
b) Chứng minh DF = 2FM.
c) BF cắt DC tại I, DE cắt AB tại K. Chứng minh tứ giác BIDK là hình bình hành
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.