Tìm GTLN: -x2+2xy-4y2+2x+10y+5
Tìm GTLN của BT
-x2+2xy-4y2+2x+10y-8
-x2-y2+xy+x+y
tim gia tri nho nhat cua bieu thuc A = x2 -2xy + 4y2 -2x -10y +3
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 2018A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
Tìm GTLN
B = -x² + 2xy - 4y² + 2x + 10y + 5
Mọi người ơi mk đang cần gấp giúp mk với ạ
\(-B=x^2-2xy+4y^2-2x-10y-5\)
=> \(-B=\left(x-y-1\right)^2+3y^2-12y+12-18\)
=> \(-B=\left(x-y-1\right)^2+3\left(y-2\right)^2-18\)
CÓ: \(\left(x-y-1\right)^2;3\left(y-2\right)^2\ge0\forall x;y\)
=> \(B\ge-18\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
a. 12x3y – 24x2y2 + 12xy3 b. x2 – 6 x +xy – 6y c. 2x2 + 2xy x – y d. x3– 3x2 + 3x – 1 e. 3x2 – 3y2 – 12x – 12y f. x2 – 2xy – x2 + 4y2
| g. x2 + 2x + 1 – 16 h.x2 – 2x – 4y2 + 1 i. x2 – 2x –3 j. x2 + 4x –12 k. x2 – 8 x – 9 l. x2 + x – 6
|
a.
$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.
$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.
$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$
d.
$x^3-3x^2+3x-1=(x-1)^3$
e.
$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$
$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$
f.
$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$
g.
$x^2+2x+1=(x+1)^2$
h. Không phân tích được thành nhân tử
i.
$x^2-2x-3=(x^2-3x)+(x-3)=x(x-3)+(x-3)=(x+1)(x-3)$
j.
$x^2+4x-12=(x^2-2x)+(6x-12)=x(x-2)+6(x-2)=(x-2)(x+6)$
k.
$x^2-8x-9=(x^2+x)-(9x+9)=x(x+1)-9(x+1)=(x+1)(x-9)$
l.
$x^2+x-6=(x^2+3x)-(2x+6)=x(x+3)-2(x+3)=(x-2)(x+3)$
Tìm GTLN hoặc GTNN
2x^2+y^2-2xy-2x+3
2xy+10y-x^2-2y^2-2x
a, = x^2 -2xy +y^2 +(x^2-2x+1)+2
= (x-y)^2 + (x-1)^2 + 2
GTNN bằng 2 khi: x-y=0 và x-1=0
Suy ra: x = y = 1
Vậy GTNN của biểu thức trên là: 2 tại x=y=1
b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17
= -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17
= -(x-y+1)^2 -(y-4)^2 +17
GTLN bằng 17 khi: x-y+1 =0 và y-4=0
x-4+1=0 và y=4
x=3 và y=4
Vậy GTLN của biểu thức là 17 tại x=3,y=4.
Chúc bạn học tốt.
Tìm GTLN của BT sau
-x2+3x
-5x2-2xy-2y2+14x+10y-1
-8x2-3y2-26x+6y+100
\(-5x^2-2xy-2y^2+14x+10y-1\\ =-\left(x^2+2xy+y^2\right)-\left(4x^2-2\cdot2\cdot\dfrac{7}{2}x+\dfrac{49}{4}\right)-\left(y^2-10y+25\right)+\dfrac{55}{4}\\ =-\left(x+y\right)^2-\left(2x-\dfrac{7}{2}\right)^2-\left(y-5\right)^2+\dfrac{55}{4}\le\dfrac{55}{4}\\ Max\Leftrightarrow\left\{{}\begin{matrix}x=-y\\2x=\dfrac{7}{2}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=\dfrac{7}{4}\\y=5\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Vậy dấu \("="\) ko xảy ra
a: Ta có: \(-x^2+3x\)
\(=-\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Tìm GTLN của:
\(A=-x^2+2xy-4y^2+2x+10y-3\)
Ta có \(A=-x^2+2xy-4y^2+2x+10y-3\)
\(A=-x^2+2\left(y+1\right)x-4y^2+10y-3\)
\(A=-x^2+2\left(y+1\right)x-\left(y+1\right)^2-3y^2+12y-2\)
\(A=-\left[x-\left(y+1\right)\right]^2-3\left(y^2-4y+4\right)+10\)
\(A=-\left(x-\left(y+1\right)\right)^2-3\left(y-2\right)^2+10\) \(\le10\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y+1\\y-2=0\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(3,2\right)\)
Vậy \(max_A=10\)