Cho tam giác ABC vuông tại A, có AB=AC. Trên tia đối của tia BC lấy D sao cho AB=BD.Tính ADB
Cho tam giác nhọn ABC (AB < AC) có D là trung điểm của BC. Trên tia đối của tia DA lấy điểm M sao cho MD = DA
a) Chứng minh: D ADB = D MDC suy ra AB = MC.
b) Kẻ AQ vuông góc với BC tại Q. Trên tia đối của tia QA lấy điểm F sao cho . Chứng minh: DMDF là tam giác cân
a) Xét △ADB và △MDC
ta có: BD=DC (vì D là trung điểm của BC)
ADB=CDM (2 góc đổi đỉnh)
AD=DM (gt)
Suy ra: △ADB=△MDC (c-g-c)
Cho Tam giác ABC vuông tại A(AB<AC). Trên tia đối của tia AC Lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho DE=BC
1. CM: Tam giác ADE= tam giác ABC
Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. a) Chứng minh: BC = DE. b) Chứng minh: tam giác ABD vuông cân và BD // CE. c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh: NM // AB. d) Chứng minh: AM = DE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
Suy ra: BC=DE
Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC
help meeeeee mai thi ròi
Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt cạnh AC tại D. Trên cạnh BC lấy điểm E sao cho BC=BA
a) C.minh tam giác ADB=EDB và DE vuông góc với BC
b) trên tia đối của tia AB lấy điểm M sao cho AM=FC. Cminh MD=CD
c) C.minh M,D,E thẳng hàng
* cho tam giác ABC vuông cân tại A . Trên Ac lấy D và E sao cho AC=CD=DE.Trên tia đối AB lấy H sao cho A là trung điểm của BH đường thẳng Vuông góc với AB ở h , Với AE ở c cắt nhau ở K
a/ CM: tam giác BKE vuông cân ở K
b/ CM: góc ADB + góc AEB = 45 độ
** Cho tam giác ABC. Trên tia đối của tia AB lấy E, trên tia đối của tia AC lấy điểm D. Các tia phân giác của góc ACB và AED cắt nhau tại F. Chứng minh : Góc EFC = (góc ABD + góc ADE) / 2
****************
Tam giác ABC vuông tại có AB<AC,trên tia AC lấy điểm D sao cho AD=AB.Trên tia đối của tia AB lấy điểm E sao cho cho AE=AC.CM:
a) BC=DE
b) BC vuông góc với DE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
=>BC=DE
b: Gọi giao của BD với CE là M
góc MEB+góc MBE
=45+45=90 độ
=>BD vuông góc CE tại M
Xét ΔCEB có
CA,BM là đường cao
CA cắt BM tại D
=>D là trực tâm
=>BC vuông góc ED
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy M sao cho BM = BA.
a) Chứng minh: Tam giác ABD = tam giác MBD
b) Chứng minh: góc MAD = góc AMD
c) Trên tia đối của tia AB lấy điểm E sao cho AE = AB. Lấy K thuộc tia đối của tia DA sao cho KD = 2DA. BD cắt KE tại H. Chứng minh H là trung điểm của KE
CÁC BẠN GIÚP MIK CÂU C VỚI !!! CẢM ƠN TRƯỚC NHA
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
Cho tam giác ABC vuông tại A (AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
1) Chứng minh rằng : BC = DE.
2) Chứng minh rằng : Tam giác ABD vuông cân và BD // CE.
3) Vẽ đường cao AH của tam giác ABC, tia AH cắt cạnh DE tại M. Từ A vẽ đường vuông góc với CM tại K, đường thẳng này cắt BC tại N.
Chứng minh rằng : MN // AB và AM = 1/2 DE.
1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)
Suy ra: BC=DE(hai cạnh tương ứng)
2) Xét ΔABD có AB=AD(gt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)
nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)