cho a3-3a2+5a-2011=0 , b3-3b2+5b+2005=0
tính a+b
ai xong truoc minh like cho. Cần gấp !
cho a và b lần lượt thỏa mãn các hệ thức sau
a3-3a2+5a-2020=0 và b3-3b2=5b=2014
tính a+b
Xét a,b là các số thực thỏa mãn:
1. a3 + a = 3 và b3 + b = 3. Chứng minh rằng a=b.
2. a3+ 3a2+ 4a - 2 =0 và b3- 3b2 + 4b - 7 =0. Tính a + b ?
10:591. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
bài 1: cho a,b,c thỏa mãn a+b+c=0
tính: (a+2b)2+(b+2c)2+(c+2a)2 / (a-2b)2+(b-2c)2+(c-2a)2
bài 2: cho số a,b,c có tổng khác 0 thỏa mãn: a3+b3+c3=3abc
tính: ab+2bc+3ca / 3a2+4b2+5c2
1.
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
Ta có:
\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)
\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)
\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)
b.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)
cho a,b,c thoả a3 + b3 + c3 = 3abc và a,b,c khác 0. Chứng minh rằng biểu thức Q = a2+ 3b2 + 5c2 / (a + b + c)2 có giá trị không đổi
cho các số a,b tìm các hệ thức cho a;b là các số thực thỏa mãn a^3-3a^2+5a-2011=0;b^3-3b^2+5b+2005=0.Tính a+b
mọi người giải giúp em bài này với
a3 - 3a2+ 5a – 17 = 0 , b3 - 3b2 + 5b + 11 = 0 . Tính a+b
cho a,b thỏa mãn \(a^3-3a^2+5a-2011=0\)
và \(b^3-3b^2+5b+2005=0\)
tính a+b
giải giúp mik vs!
a) 5x(x-3)-x+3=0
b) x2+3x-2x-6=0
d) 3x2+2x-5
bài 2:
cho a+b+c=0
tính giá trị biểu thức:
A=a3+b3+c(a2+b2)-abc
bài 3
cho a+b=7 và ab=12
tính: a) (a-b)2
b) a3+ b3
Bài 3:
a: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)
b: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=7^3-3\cdot12\cdot7\)
\(=343-252=91\)
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5. Nhanh lên mọi người. Mik rất cần gấp !!!!