tìm số nguyên n sao cho: \(\dfrac{n+3}{n-2}\) là số nguyên
Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên:
\(\dfrac{4}{n+2}\) (n\(\ne\)-2)
Với n≠-2,n∈Z. Để 4/n+2 có giá trị là số nguyên thì 4⋮n+2
⇒n+2 ∈ Ư(4)={1;2;4;-1;-2;-4}
Nếu n+2=1⇒n=-1(TMĐK)
Nếu n+2=2⇒n=0(TMĐK)
Nếu n+2=4⇒n=2(TMĐK)
Nếu n+2=-1⇒n=-3(TMĐK)
Nếu n+2=-2⇒n=-4(TMĐK)
Nếu n+2=-4⇒n=-6(TMĐK)
Vậy với n ∈ {-1;0;2;-3;-4;-6} thì 4/n+2 có giá trị nguyên.
Tìm tất cả các số nguyên n sao cho \(\dfrac{n+1}{3n-2}\)là phân số có giá trị là số nguyên
Tìm tất cả các số nguyên n sao cho phân số sau có giá trị là số nguyên
\(\dfrac{2n+5}{n-3}\)
\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)
Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)
Ta có bảng:
n-3 | -11 | -1 | 1 | 11 |
n | -8 | 2 | 4 | 14 |
Vậy \(n\in\left\{-8;2;4;14\right\}\)
\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)
Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)
\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)
Cho biểu thức A= \(\dfrac{2n+1}{n-2}\)
a) Tìm điều kiện của số nguyên n để A là một phân số. Tính giá trị của A khi n= -2.
b)Tìm các số nguyên n sao cho phân số A có giá trị là một số nguyên.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Bài 17: Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên.
a) \(\dfrac{12}{3n-1}\) . b) \(\dfrac{2n+3}{7}\) .
c) \(\dfrac{2n+5}{n-3}\) .
Mình mới học lớp 5 thôi nha
Mong bạn thông cảm
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
tìm các số tự nhiên n sao cho phân số \(\dfrac{n+3}{3n}\)có giá trị là số nguyên
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
tìm số tự nhiên n nhỏ hơn 30 sao cho \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên
Để \(x=\dfrac{\sqrt{n-1}}{2}\) là số nguyên thì \(\sqrt{n-1}⋮2\)
=>\(n-1=\left(2k\right)^2=4k^2\)(k\(\in\)Z) và n>=1
=>\(n=4k^2+1\)
n<30
=>\(4k^2+1< 30\)
=>\(4k^2< 29\)
=>\(k^2< \dfrac{29}{4}\)
mà k nguyên
nên \(k^2\in\left\{0;1;4\right\}\)
\(n=4k^2+1\)
=>\(n\in\left\{1;5;17\right\}\)