Cho tam giác ABC có góc B>C, BH,CK là đường cao. Cm BH<CK
Cho tam giác ABC có AB=12 cm, AC=16cm. Hai đường cao xuất phát từ đỉnh B và C là BH và CK . Biết BH=9cm. Tính CK.
A. 12cm
B. 15cm
C. 9cm
D. 8cm
CHO TAM GIÁC ABC CÓ \(\widehat{B}\)> \(\widehat{C}\), BH,CK LÀ 2 ĐƯỜNG CAO. CM BH<CK
Cho tam giác ABC có AB = 4cm và AC = 7cm. Gọi BH và CK theo thứ tự là đường vuông góc từ đỉnh B và C của tam giác. Tính BH/CK ?
A. 4/7
B. 7/4
C. 4/3
D. Đáp án khác
Cho tam giác ABC cân tại A có BH và CK là 2 đường cao.
a) Chứng minh: BH= CK
b) Chứng minh: BCHK là hình thang cân
c) Cho góc BAC = 40 độ. Tính các góc của hình thang
a) Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90\left(gt\right)\)
BC: cạnh chung
\(\widehat{KBC}=\widehat{HCB}\left(gt\right)\)
=> ΔKBC=ΔHCB(ch-gn)
=>BK=HC
b) Có: AB=AK+KB
AC=AH+HC
Mà: AB=AC(gt); BK=HC(gt0
=>AK=AH
=>ΔAKH cân tại A
=>\(\widehat{AKH}=\frac{180-\widehat{A}}{2}\) (1)
Vì ΔABC cân tại A
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra: \(\widehat{AKB}=\widehat{ABC}\) . Mà hai góc này ở vị trí đồng vị
=> KH//BC
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)
=>BCHK là hình thang cân
a) ta có tam giác ABC cân tại A => hai đường cao BH vafCK cũng bằng nhau
b) ta có tam giác HBC = tam gác KCB
=> BK=CH
mặt khác KH//BC
=> BCHK là hình thang cân
c) góc BAC=40
=> B=C=(180-40):2=70
ta có K+B=180
=> K=H=180-70=110
cho tam giác ABC có ba góc nhọn. Gọi BH, CK lần lượt là các đường cao kẻ từ B và C( H thuộc AC, K thuộc AB). Biết BH cắt CK tại M và AM cắt BC tại N. Chứng minh tứ giác HKBC nội tiếp đường tròn
\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\) nên HKBC nội tiếp đường tròn
cho tam giác abc cân tại a. TRên tia đối tia cb và bc lấy lần lượt e và d sao cho bd=ce.
a, CM; tam giác ADE cân
b, gọi m là trung điểm của bc.CM: AM là tia phân giác của góc DAE
c . BH vuông góc với AD. CK vuông góc với AE. CM: BH=CK
d CM: ba đường thẳng AM,BH,CK cùng đi qua 1 điểm
Em mời có lớp 5 thôi
Cho tam giác ABC cân tại A. Vẽ bH vuông góc AC, CK vuông góc AB
a. CMR: AH=AK
b. Gọi I là giao điểm của BH và CK. CMR góc KAI= góc HAI
c. Đường thẳng AI cắt BC tại M. CM AI vuông góc BC tại M
d. CM: tam giác IBC là tam giác cân
Hình bạn tự vẽ
a) CMR: AH = AK:
Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:
AB = AC ( vì tam giác ABC cân tại A )
góc A chung
Do đó: tam giác AHB = tam giác AKC ( ch-gn )
Suy ra: AH = AK ( 2 cạnh tương ứng)
b) CMR: góc KAI = góc HAI:
Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:
AH = AK ( chứng minh câu a )
cạnh AI chung
Do đó: tam giác KAI = tam giác HAI ( ch-cgv)
suy ra: góc KAI = góc HAI ( 2 góc tương ứng )
c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )
Xét tam giác BAM và tam giác CAM, có:
cạnh AM chung
AB = AC ( vì tam giác ABC cân tại A )
góc KAI = góc HAI ( chứng minh câu b )
do đó: tam giác BAM = tam giác CAM ( c-g-c)
suy ra: góc AMB = góc AMC ( 2 góc tương ứng )
ta có: góc AMB + góc AMC = 180 độ ( kề bù )
hay 2. góc AMB = 180 độ
=> 180 độ : 2 = 90 độ
do đó: AM vuông góc BC tại M ( đpcm )
Câu d mình làm sau do máy mình hết pin rồi!
Cho tam giác ABC có góc A=30độ
Đường cao BH và CK
Gọi E và F là trung điểm của AC và AB
a, CM tam giác BEH= tam giác CKF
b, CM HE vuông góc với KF