cho phương trình x+ax+b=0 có ngiệm nguyên và a+b+1=2014. tìm a;b biết chúng là số nguyên ?
Cho phương trình ax2+bx+c=0 và a,b,c là các số nguyên lẻ. Chúng minh rằng nếu phương trình đó có nghiệm thì ngiệm đó không thể là số nguyên
Cho phương trình :
0,9 - ( x - 0,6 ) = 4 ( x + 0,7 )
a, Đưa phương trình trên về dạng ax + b = 0 ; với a = - 5 thì b = ............
b, Ngiệm của phương trình là : x = .................
Cho phương trình x2 + ax +b =0 (1) với a,b là tham số nguyên. Giả sử pt(1) có một nghiệm là 2 - \(\sqrt{3}\) . Tìm a và b
Do pt có 1 nghiệm là \(2-\sqrt{3}\)
\(\Rightarrow\left(2-\sqrt{3}\right)^2+a\left(2-\sqrt{3}\right)+b=0\)
\(\Leftrightarrow7-4\sqrt{3}+2a-a\sqrt{3}+b=0\)
\(\Leftrightarrow2a+b+7=\left(a+4\right)\sqrt{3}\)
Vế trái là số hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a+4=0\\2a+b+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=1\end{matrix}\right.\)
Nhờ các bạn giải dùm:
1/Cho 3 số thực phân biệt a, b, c sao cho phương trình x2+ax+1=0 và x2+bx+c=0 có nghiệm chung, đồng thời phương trình x2+x+a=0 và
x2+cx+b=0 cũng có nghiệm chung.
Hãy tính a+b+c
2/Tìm a, b, c nguyên dương sao cho: a2-2c+2=abc
Ý tưởng như sau:
\(x^2+ax+1=0\) và \(x^2+bx+c=0\) là 2 pt có nghiệm chung nên hệ pt sau có nghiệm (nhận xét quan trọng):
\(\hept{\begin{cases}x^2+ax+1=0\\x^2+bx+c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)x=c-1\\x^2+ax+1=0\end{cases}}\)
Do \(a\ne b\) nên thay \(x=\frac{c-1}{a-b}\) xuống pt dưới được: \(\left(\frac{c-1}{a-b}\right)^2+\frac{a\left(c-1\right)}{a-b}+1=0\)
Hay \(\left(c-1\right)^2+a\left(c-1\right)\left(a-b\right)+\left(a-b\right)^2=0\)
-----
\(x^2+x+a=0\) và \(x^2+cx+b=0\) có nghiệm chung thì hệ pt sau có nghiệm:
\(\hept{\begin{cases}x^2+x+a=0\\x^2+cx+b=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(c-1\right)x=a-b\\x^2+x+a=0\end{cases}}}\)
Do \(a\ne b\) nên \(c\ne1\), thay \(x=\frac{a-b}{c-1}\) xuống pt dưới được:
\(\left(\frac{a-b}{c-1}\right)^2+\frac{a-b}{c-1}+a=0\) hay \(\left(a-b\right)^2+\left(a-b\right)\left(c-1\right)+a\left(c-1\right)^2=0\)
-----
Đặt \(x=a-b,y=c-1\)
Ta có hệ: \(\hept{\begin{cases}x^2+axy+y^2=0\\x^2+xy+ay^2=0\end{cases}\Rightarrow\left(a-1\right)xy=\left(a-1\right)y^2}\)
Nhớ rằng \(a=1\) không xảy ra vì khi đó \(x^2+ax+1=0\) vô nghiệm.
Vậy \(a\ne1\), do \(y\ne0\) nên \(x=y\). Tức là \(a-b=c-1\).
Tới đây quay lại mấy cái nghiệm chung sẽ thấy các nghiệm chung đều là \(1\).
Mà như vậy thì \(b+c=-1,a=-2\) nên \(a+b+c=-4\)
Cho phương trình x2 +ax+b=0,tìm a,b nguyên để x=\(\sqrt{2}\)là nghiệm của phương trình trên
Ta có: \(\left(\sqrt{2}\right)^2+a\cdot\sqrt{2}+b=0\)
\(\Leftrightarrow a\sqrt{2}+b=-2\)
Vì b là số nguyên
và -2 cũng là số nguyên
nên \(a\sqrt{2}\) cũng là số nguyên(vô lý)
\(x^2+ax+b=0\) có nghiệm là \(\sqrt{2}\) nên
\(2+a\sqrt{2}+b=0\\ \Leftrightarrow b=a\sqrt{2}\)
Mà \(a,b\in Z\) nên đẳng thức xảy ra khi: \(a=b=0\)
cho hệ phương trình \(\hept{\begin{cases}x-my=0\\mx-4y=m+1\end{cases}}\)
a) Giải hệ khi m=-1
b)tìm giá trị nguyên của m để hệ có 2 nghiệm nguyên
c) Xác định m để hệ có 2 ngiệm thỏa mãn x>0,y>0
x2 +(2m-5)x -n=0
a) Tìm m và n biết phương trình có hai nghiệm là -2 và 3
b) Cho m = 5. Tìm số nguyên dương n nhỏ nhất để phương trình có ngiệm dương
Tìm a và b biết rằng phương trình ax2-2bx+3=0 có tập ngiệm S=(-2;1)
Thay \(x=-2\) vào phương trình, ta có
\(a\left(-2\right)^2-2b\left(-2\right)+3=0\)
\(\Leftrightarrow4\left(a+b\right)=-3\)
\(\Leftrightarrow a+b=-\dfrac{3}{4}\) (1)
Thay \(x=1\) vào phương trình, ta có
\(a.1^2-2b.1+3=0\)
\(\Leftrightarrow a-2b=-3\) (2)
Trừ (2) cho (1) theo vế, ta được
\(-3b=-\dfrac{9}{4}\Rightarrow b=\dfrac{3}{4}\) \(\Rightarrow a=-\dfrac{3}{4}-\dfrac{3}{4}=-\dfrac{3}{2}\)
Vậy \(a=-\dfrac{3}{2}\) và \(b=\dfrac{3}{4}\)
cho phương trình ã+by=c có nghiệm nguyên với a,b,c là các số nguyên tố cùng nhau từng đôi và a-b là bội của c. Cmr ngiệm (x,y) của phương trình phải thỏa mãn x+y là bội của c
Giả sử rằng \(\left(x,y\right)\) là nghiệm nguyên của phương trình \(ax+by=c.\) Suy ra \(a\left(x+y\right)+y\left(b-a\right)=c.\) Vì \(b-a\vdots c\to a\left(x+y\right)\vdots c\). Mà \(a,c\) là hai số nguyên tố cùng nhau nên \(x+y\vdots c.\)