F= 1/1+2+3+1/1+2+3+4+....+1/1+2+....+59
F = 1/59 + 2/58 + 3/57 + ... + 58/2 + 59/1 : 1/2 + 1/3 + ... + 1/60
Tính tổng: 1/1+2+3 +1/1+2+3+4 +... 1/1+2+3+4+5+...+59
chứng minh m=1/1+2+3+1/1+2+3+4+1/1+2+3+4+5+...1/1+2+3+...+59 <2/3
1/M=1/1+2+3+1/1+2+3+4+1/1+2+3+4+5+...+1/1+2+3+4+..+59
cmr M>2/3
Chứng minh \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+......+\(\dfrac{1}{1+2+3+4+...+59}\)<\(\dfrac{2}{3}\)
\(\dfrac{1}{1+2+3+...+n}=\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{n}-\dfrac{2}{n+1}\)
Do đó:
\(\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+...+59}=\dfrac{2}{3}-\dfrac{2}{4}+\dfrac{2}{4}-\dfrac{2}{5}+...+\dfrac{2}{59}-\dfrac{2}{60}\)
\(=\dfrac{2}{3}-\dfrac{2}{60}< \dfrac{2}{3}\) (đpcm)
\(\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+...+59}\)
A = \(\dfrac{1}{1+2+3}\) + \(\dfrac{1}{1+2+3+4}\) +......+\(\dfrac{1}{1+2+3+4+....+59}\)
A = \(\dfrac{1}{(3+1).3:2}\) + \(\dfrac{1}{(4+1).4:2}\)+......+\(\dfrac{1}{(59+1).59:2}\)
A = \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) +.....+ \(\dfrac{2}{59.60}\)
A = 2.(\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{59.60}\))
A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +....+ \(\dfrac{1}{59}\) - \(\dfrac{1}{60}\))
A = 2. ( \(\dfrac{1}{3}\) - \(\dfrac{1}{60}\))
A = 2. \(\dfrac{19}{60}\)
A = \(\dfrac{19}{30}\)
Cho 1/M=1/(1+2+3) + 1/(1+2+3+4) +.....+ 1/(1+2+3+4+...+59)
Chứng minh rằng M>2/3
M= \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+\(\dfrac{1}{1+2+3+...+59}\) CMR M<\(\dfrac{2}{3}\)
Ta có \(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\)
= \(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
= \(\dfrac{1}{3}-\dfrac{1}{60}=\dfrac{19}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)
Vậy M < \(\dfrac{2}{3}\)
1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+59<2/3
Help me, please!