E=1/5^2 + 1/9^2+ ....+1/2017^2
A=2/1×3+2/3×5+2/5×7+2/7×9+...2/2017×2019
Mn giúp e vs e cần gấp
Lời giải:
$A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{2017.2019}$
$=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2019-2017}{2017.2019}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}$
$=1-\frac{1}{2019}=\frac{2018}{2019}$
1. Tính các tổng sau :
a) 1 +2 + 3 + 4 +... + n
b) 2 + 4 + 6 + 8 + ... + 2.n
c) 1 + 3 + 5 + 7 + ... + (2n + 1)
d) 1 + 4 + 7 + 10 + ... + 2017
e) 2 + 5 + 8 + ... + 2018
f) 1 + 5 + 9 + ... + 2007
a) 13 (x - 9 ) = 169
b) 7^x+2 =243
c) 230 + [ 16+ (x-5)] =315 .2^3
d) 13. x - 3^2 .x = 2017^1 - 1^2018
e) (3 x + 1)^5 = 1024
a,
13[x-9] = 169
=> x - 9 = 169/13
=> x - 9 = 13
=> x = 13+9
=> x = 22
b,
Viết lại đề:
7x+3 = 343
<=> 7x+3 = 73
=> x + 3 = 3
=> x = 3-3
=> x = 0
c,
230 + [16 + [x-5]] = 315 . 23
=> 230 + [16 + x - 5] = 315 . 8
=> 230 + 16 + x - 5 = 2520
=> 230 + 16 + x = 2520 + 5 = 2525
=> x = 2525 - 230 - 16 = 2279
d,
13.x - 32.x = 20171 - 12018
=> 13x - 9x = 2017 - 1
=> 4x = 2016
=> x = 504
a) 13 ( x-9 )=169
=> x-9 =169 : 13 =13
=> x=13+9 =22
b)\(7^{x+3}=343\)
\(7^x.7^3=343\)
\(7^x=343:7^3\)
\(7^x=1\Rightarrow x=1\)
c)230 + 16 +x -5 =315.8
241 +x =2520
x=2520-241=2279
d) 13x -\(3^2.x\)=2017-1
x(13-9)=2016
x.4=2016
x=2016:4
x=504
Tính A =\(\dfrac{3^2-1}{5^2-1}.\dfrac{7^2-1}{^{ }9^2-1}......\dfrac{2015^2-1}{2017^2-1}.\dfrac{2017^2-1}{2019^2-1}\)
\(\frac{3^2-1}{5^2-1}.\frac{7^2-1}{9^2-1}......\frac{2015^2-1}{2017^2-1}.\frac{2017^2-1}{2019^2-1}\) \(\Rightarrow\frac{1}{3}.\frac{3}{5}......\frac{1007}{1009}.\frac{504}{505}\)=\(\frac{504}{505}\)
A=\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+....+\(\dfrac{1}{2017^2}\)
Giải giúp e với ạ. E cảm ơn
1+2+3+4+...+n
2+4+6+8+2.n
1+3+5+(2.n+1)
1+4+7+10+...+2017
2+5+8+...+2018
1+5+9+...+2017
Tính A =\(\dfrac{3^2-1}{5^2-1}.\dfrac{7^2-1}{^{ }9^2-1}......\dfrac{2015^2-1}{2017^2-1}.\dfrac{2017^2-1}{2019^2-1}\)
F=1/1+√5+1\√5+√9+1/√9+√13+...+1/√2013+√2017
C=1/√1+√2 +1/√2+√3+....+1/√n-1 +√n
a, tính GT của đa thức \(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\) tại \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
b, so sánh \(\sqrt{2017^2-1}-\sqrt{2016^2-1}và\dfrac{2.2016}{\sqrt{2017^2-1}-\sqrt{2016^2-1}}\)
c, tính GTBT: \(sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
d, biết \(\sqrt{5}\) là số hữu tỉ, hãy tìm các số nguyên a,b tm::
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
a.
\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)
c.
\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)
d.
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{-a-5b\sqrt{5}}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\\ \Leftrightarrow\left(9+20\sqrt{5}\right)\left(a^2-5b^2\right)=a+5b\sqrt{5}\\ \Leftrightarrow9\left(a^2-5b^2\right)+\sqrt{5}\left(20a^2-100b^2\right)-5b\sqrt{5}=a\\ \Leftrightarrow\sqrt{5}\left(20a^2-100b^2-5b\right)=9a^2-45b^2+a\)
Vì \(\sqrt{5}\) vô tỉ nên để \(\sqrt{5}\left(20a^2-100b^2-5b\right)\) nguyên thì
\(\left\{{}\begin{matrix}20a^2-100b^2-5b=0\\9a^2-45b^2+a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}180a^2-900b^2-45b=0\\180a^2-900b^2+20a=0\end{matrix}\right.\\ \Leftrightarrow20a+45b=0\\ \Leftrightarrow4a+9b=0\Leftrightarrow a=-\dfrac{9}{4}b\\ \Leftrightarrow9a^2-45b^2+a=\dfrac{729}{16}b^2-45b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow\dfrac{9}{16}b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow b\left(\dfrac{9}{16}b-\dfrac{9}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=9\end{matrix}\right.\)
Với \(\left(a;b\right)=\left(0;0\right)\left(loại\right)\)
Vậy \(\left(a;b\right)=\left(9;4\right)\)