Tìm tất cả các số nguyên tố \(p;q;r\) thỏa mãn phương trình sau:
\(\left(p+2\right).\left(q+2\right).\left(r+1\right)=4.p.q.r\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán hướng dẫn và giúp đỡ em với ạ!
Em cám ơn nhiều ạ!
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố
Tìm tất cả các số nguyên tố p sao cho p+11 cũng là số nguyên tố
Tìm tất cả các số nguyên tố p để p+8, p+10 cũng là số nguyên tố
Nhanh gúup mình nhé mình đang cần gấp
p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.
p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )
Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!
Tìm tất cả các số nguyên tố p để p+8, p+10 cũng là các số nguyên tố.
+Với \(p=2\) ta có: \(p+8=10\) là hợp số \(\Rightarrow\) không thỏa mãn \(p+10=12\)
+Với \(p=3\) ta có: \(p+8=11\)là số nguyên tố \(\Rightarrow\) thỏa mãn \(p+10=13\)
Với \(p>3\) do p là số nguyên tố \(\Rightarrow p=3k+1\) hoặc \(3k+2\)
Với \(p=3k+1\) thì \(p+8=3k+9\)
Do \(3k+9\) chia hết cho 3 mà \(3k+9>3\rightarrow3k+9\) là hợp số \(\Rightarrow\) không thỏa mãn \(p+10=3k+11\)
+Với \(p=3k+2\) thì \(p+8=3k+10\)
\(p+10=3k+12\)
Do \(3k+12\) chia hết cho \(3\) mà \(3k+12>3\rightarrow3k\) là hợp số ⇒ không thoả mãn
Vậy \(p=3\)
Tìm tất cả các số nguyên tố p để 2p + p2 còng là số nguyên tố
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố
Tìm tất cả các số nguyên tố p để: 2p + p2 là số nguyên tố
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
HT
p = 1
nha bạn
chúc bạn học tốt nha
TRẢ LỜI:
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Tìm tất cả các số nguyên tố p đề 2p+p²cũng là số nguyên tố
Tìm tất cả các số nguyên tố P sao cho P bằng tổng 2 số nguyên tố bằng hiệu hai số nguyên tố
tìm tất cả các số nguyên tố p để p+8,p+10 cũng là số nguyên tố.
tìm tất cả các số nguyên tố p để p+8 và p+10 cũng là các số nguyên tố
vì p là số nguyên tố nên ta xét :
-p=2=>p+8=10laf hợp số (loại)
-p=3=>p+8=11 .Đều là số nguyên tố (t/m)
p+10=13
-p>3=>p có dạng 3k+1;3k+2(k thuộc N) (vì p là số nguyên tố)
*nếu p=3k+1=>p+8=3k+1+8=3k+9 chia hết cho 3 và 3k+9>3=>p+8 là hợp số (loại)
*nếu p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3 và 3k+2>3=>p+10 là hợp số (loại)
Vậy p=3
Tìm tất cả các số nguyên tố P để a = P^2+8 là số nguyên tố
p là số nguyên tố
xét p=2 loại tự làm
xét p=3 chọn tự làm
xét p=3k+1 hoặc p= 3k+2
p=3k+1=> p^2+8= (3k+1)^2+8= 9k^2+6k+9 chia hết cho 3
p=3k+2=> p^2+8= (3k+2)^2+8= 9k^2+12k+12 chia hết cho 3
nên từ đó suy ra p=3 là thoả đề