Cho biểu thức A = ( \(\frac{2x+1}{x-1}\)+ \(\frac{8}{x^2-1}\)- \(\frac{x-1}{x+1}\)) . \(\frac{x-1}{x+1}\)
a. Tìm điều kiện để biểu thức A xác định
b) Rút gọn A
c) Tìm giá trị nhỏ nhất của biểu thức A.
Làm giúp mình câu c) thôi cũng được.
Câu 1:Cho biết thức A = \(\frac{1}{x-1}\)+ \(\frac{4}{x^2-1}\)- \(\frac{2}{x^2-2x+1}\)
a/ Tìm điều kiện xác định của x để biểu thức A xác định
b/ Rút gọn A
Câu 2: Tìm giá trị nhỏ nhất của phân thức B=\(\frac{x^2-2}{x^2+1}\)
Tìm x để giá trị của biểu thức X2 + 2x -2 là nhỏ nhất
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
Để A xác định
\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)
\(\Rightarrow x^2-1\ne0\)
\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,
cho biểu thức: A=(\(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\)) : \(\frac{x+1}{x-2}\)
a) Tìm điều kiện xác định của biểu thức A
b) Rút gọn biểu thức A
c) Tính giá trị của biểu thức A khi x = -1
d) Tìm các giá trị nguyên của x để A có giá trị nguyên
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\)
1. Nêu Điều kiện xác định và rút gọn biểu thức A
2. Tính giá trị của biểu thức A khi x=9
3. Khi x thỏa mãn điều kiện xác định . hãy tìm giá trị nhỏ nhất của biểu thức B , với B=A (x-1)
Cho biểu thức :
A= x^2+2x/2x+10 + x−5/x + 50−5x/2x(x+5)
a) Tìm điều kiện của biến x để giá trị của biểu thức được xác định
b) rút gọn biểu thức A
c)Tìm giá trị của x để giá trị của biểu thức bằng 1
d)tính A - x/1-x
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
Cho biểu thức: \(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)
a. Tìm điều kiện của x để giá trị của biểu thức A được xác định
b. Rút gọn A
c. Tìm giá trị của A tại x = 2
a) Điều kiện: \(x\ne0;x\ne1\)
b) \(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)
\(A=\left(\frac{x}{x-1}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)
\(A=\left(\frac{x^2}{\left(x-1\right).x}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)
\(A=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right).x}.\frac{x}{\left(x+1\right)^2}\)
\(A=\frac{x+1}{x}.\frac{x}{\left(x+1\right)^2}=\frac{1}{x+1}\)
c) Thay: \(x=2\)vào \(\frac{1}{x+1}\)ta có: \(A=\frac{1}{2+1}=\frac{1}{3}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
b)
\(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)
\(A=\left(\frac{x}{x-1}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{x^2+2x+1}\)
\(A=\left(\frac{x\cdot x}{x\left(x-1\right)}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{\left(x+1\right)^2}\)
\(A=\frac{x^2-1}{x\left(x-1\right)}\cdot\frac{x}{\left(x+1\right)^2}=\frac{\left(x^2-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{\left(x+1\right)\left(x-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{1}{x+1}\)
c) \(A=\frac{1}{x+1}=\frac{1}{2+1}=\frac{1}{3}\)
Vậy \(A=\frac{1}{3}\)
\(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right)\div\frac{x^2+2x+1}{x}\)
a) ĐKXĐ : x ≠ 0 ; x ≠ ±1
b) \(A=\left(\frac{x}{x-1}-\frac{1}{x\left(x-1\right)}\right)\div\frac{\left(x+1\right)^2}{x}\)
\(=\left(\frac{x^2}{x\left(x-1\right)}-1\right)\times\frac{x}{\left(x+1\right)^2}\)
\(=\frac{x^2-1}{x\left(x-1\right)}\times\frac{x}{\left(x+1\right)^2}\)
\(=\frac{\left(x-1\right)\left(x+1\right)\cdot x}{x\left(x-1\right)\cdot\left(x+1\right)^2}\)
\(=\frac{1}{x+1}\)
c) Tại x = 2 (tmđk) => Giá trị biểu thức A = 1/3
Cho biểu thức P =\(\left(\frac{2+x}{x^2+2x+1}-\frac{x-2}{x^2-1}\right).\frac{1-x^2}{x}\)
a; Tìm điều kiện của x để giá trị của biểu thức p được xác định.
b; Rút gọn P.
c;Tìm giá trị nguyê của x để giá trị của biểu thức P là số nguyên.
Điều kiện xác định của \(P\)là:
\(\hept{\begin{cases}x^2+2x+1\ne0\\x^2-1\ne0\\x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
\(P=\left(\frac{2+x}{x^2+2x+1}-\frac{x-2}{x^2-1}\right).\frac{1-x^2}{x}\)
\(=\left[\frac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}-\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\right].\frac{1-x^2}{x}\)
\(=\frac{2x}{\left(x+1\right)^2\left(x-1\right)}.\frac{1-x^2}{x}=\frac{-2}{x+1}\)
Để \(P\)nguyên mà \(x\)nguyên suy ra \(x+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow x\in\left\{-3,-2,0,1\right\}\)
Đối chiếu điều kiện ta được \(x\in\left\{-3,-2\right\}\)thỏa mãn.
cho biểu thức \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
a,Tìm điều kiện đối với x để biểu thức được xác định
b, Rút gọn
c, Với giá trị nào của x thì biểu thức được xác định
a) \(ĐKXĐ:x\ne1\)
b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)
\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)
\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(=\frac{1}{x-1}\)
c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .
P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.
Tại thấy câu c k khác j câu a !
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a)Tìm điều kiện xác định, rút gọn biểu thức
b)Tìm giá trị nhỏ nhất P
c)Tìm x để biểu thức Q=\(\frac{2\sqrt{x}}{P}\)nhận giá trị nguyên
Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)
a ) Tìm điều kiện của x để biểu thức A có nghĩa
b ) Rút gọn biểu thứ A
c ) Tìm giá trị của x khi A = 0
Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\)
a ) Tìm điều kiện của x để biểu thức B có nghĩa
b ) Rút gọn biểu thứ B
c ) Tìm giá trị của x khi B = 0
Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)
a ) Tìm x để biểu thức A xác định
b ) Rút gọn biểu thức A
c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012
d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)+ \(\frac{1}{x-1}\)- \(\frac{2}{x^2-1}\)
a ) tìm điều kiện của x để biểu thức A có nghĩa
b ) Rút gọn biểu thức A
C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
Bài 1:
a) \(x+2\ne0\Leftrightarrow x\ne-2\)
\(x^2-4\ne0\Leftrightarrow x\ne+_-2\)
b) \(A=\frac{x}{x+2}+\frac{4-2x}{x^2-4}=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Mà đk: x khác 2
Vậy ko tồn tại giá trị nào của x để A=0