tìm x
\(\frac{x}{7}\)= \(\frac{28}{x}\)
Tìm số hữu tỉ x, biết:
a, \(\frac{x-100}{24}+\frac{x-98}{26}+\frac{x-96}{28}=3\)3
b, \(\frac{x-1}{65}+\frac{x-3}{63}=\frac{x-5}{61}+\frac{x-7}{59}\)
c, \(\frac{x-28-124}{2011}+\frac{x-124-2011}{28}+\frac{x-2011-28}{124}=3\)
giúp với gấp lắm
Tìm x, biết :
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}\)
\(+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=\frac{-1}{20}\)
giúp mình với các bạn !!!!!!!!!!!!
Mình cần gấp bài này !!!
1/Tìm x, biết :
a/ \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}+\frac{x}{\left(x+3\right)\left(x+34\right)}\)
b/ \(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=\frac{-1}{20}\)
tìm x biết:
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}\)\(+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
B)\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{5}{2}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
B) \(\frac{\left(x-4\right)-\left(x-7\right)}{\left(x-7\right)\left(x-4\right)}+\frac{\left(x-7\right)-\left(x-13\right)}{\left(x-13\right)\left(x-7\right)}+\frac{\left(x-13\right)-\left(x-28\right)}{\left(x-28\right)\left(x-13\right)}\)
\(=\frac{1}{x-7}-\frac{1}{x-4}+\frac{1}{x-13}-\frac{1}{x-7}+\frac{1}{x-28}-\frac{1}{x-13}\)
\(=\frac{1}{x-28}-\frac{1}{x-4}=-\frac{5}{2}+\frac{1}{x-28}\)
\(\Leftrightarrow\frac{1}{x-28}-\frac{1}{x-4}-\frac{1}{x-28}=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{x-4}=\frac{5}{2}\)
=> 5x - 20 = 2
=> 5x = 22
\(\Rightarrow x=\frac{22}{5}=4,4\)
Vậy, x = 4,4
Tìm x
a)\(\frac{3}{\left(x-4\right).\left(x-7\right)}+\frac{6}{\left(x-7\right).\left(x-3\right)}+\frac{15}{\left(x-3\right).\left(x-38\right)}-\frac{1}{x-28}=\frac{-1}{20}\)
TÌM X
\(\frac{x}{\left(-28\right)}=\frac{4}{7}\)
\(\frac{x}{-28}=\frac{4}{7}\)
\(\Rightarrow7x=4.\left(-28\right)\)
\(\Rightarrow7x=-112\)
\(\Rightarrow x=\frac{-112}{7}\)
\(\Rightarrow x=-16\)
vậy \(x=-16\)
\(\frac{x}{\left(-28\right)}=\frac{4}{7}\) \(\Rightarrow\)\(_{_{ }^{ }x.7=4.\left(-28\right)\Rightarrow}\)7x=-112\(\Rightarrow\)x=\(\frac{-112}{7}\)\(\Rightarrow\)x=-16
Tìm x , y , z , biết :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và x+y-z = 7
=>\(\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
=>\(\frac{x}{15}=1=>x=15\)
=>\(\frac{y}{20}=1=>y=20\)
=>\(\frac{z}{28}=1=>z=28\)
vậy:\(x=15;y=20;z=28\)
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
\(\frac{x}{15}=1\Rightarrow x=1.15\Rightarrow x=15\)
\(\frac{y}{20}=1\Rightarrow y=1.20\Rightarrow y=20\)
\(\frac{z}{28}=1\Rightarrow z=1.28\Rightarrow z=28\)
Vậy x = 15
y = 20
z = 28
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{x+y-z}{15+20-28}=\frac{7}{7}=1\)
\(\Rightarrow\begin{cases}x=15\\y=20\\z=28\end{cases}\)
Tìm x:
\(\left(\frac{6}{5}-x\right)^2+|-\frac{5}{7}|=\frac{27}{28}\)
Tìm x:
\(\left(\frac{6}{5}-x\right)^2+\left|-\frac{5}{7}\right|=\frac{27}{28}\)