Cho a,b,c thỏa abc=1
Tính \(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}\frac{1}{1+c+ca}\)
Cho 3 số thực a,b,c thỏa mãn $\frac{a}{1+ab}$ =$\frac{b}{1+bc}$ =$\frac{c}{1+ca}$
Tính S=abc
cho a;b;c>0 thỏa mãn abc+ab+bc+ca=2.tìm min của
\(P=\frac{1}{ab+a+b}+\frac{1}{bc+b+c}+\frac{1}{ca+c+a}\)
Cho các số thực dương a,b,c thỏa mãn ab + bc+ ca= abc. CMR
\(\left(a+b+c\right)\left(\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}\right)\le\frac{9}{4}\)
Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)
\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)
Đến đây t cần chứng minh:
\(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)
Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)
\(\Rightarrow x+y+z=1\)
(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)
Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)
Nhứng phần kia tương tự
\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)
Lần trước làm không đúng hy vọng bây giờ gỡ lại được
nub
Bạn suy ra dòng 8 mk chưa hiểu, giải kĩ cho mk đc ko
À hiểu r nha bạn,
Bài làm thật xuất sắc!
Cho a,b,c > 0 thỏa man abc = 1 Tinh \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}\frac{1}{ca+a+1}\)
\(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\)
\(A=\frac{1}{ab+b+1}+\frac{ab}{abc.b+abc+ab}+\frac{b}{abc+ab+b}\)
Thay \(abc=1\) , ta có:
\(A=\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}=\frac{ab+b+1}{ab+b+1}=1\)
Cho a,b,c >0 thỏa mãn abc=1. CMR: \(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
cho a,b,c > 0 thỏa mãn abc=1.CMR
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho 3 số a,b,c thỏa mãn abc=1.
Tính \(HUY=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)
\(HUY=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}=1\)
Cho ba số thực dương a, b, c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{a+ab+1}{ab+a+1}=1\)
Cho 3 số a ; b ; c thỏa mãn a . b . c = 1. Tính :\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)