\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{a+ab+1}{ab+a+1}=1\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{a+ab+1}{ab+a+1}=1\)
cho a,b,c>0 thỏa abc=1
chứng minh nếu a+b+c>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) thì chỉ có 1 và chỉ 1 số trong 3 số a,b,c lớn hơn 1
Cho A a,b,c dương thỏa mãn abc=1.Chứng minh rằng nếu a+b+c>1/a+1/b+1/c thì có 1 và chr 1 trong ba số a,b,c lớn hơn 1
Sử dụng phương pháp chứng minh
phản chứng để chứng minh các bài toán sau:
a) Chứng minh rằng có ít nhất một trong 3
phương trình :ax2 + bx + c = 0, bx2 + cx +
a = 0, cx2 + ax + b = 0 vô nghiệm.
b) Cho 0 < a, b, c < 1. Chứng minh có ít
nhất 1 trong các bất đẳng thức sau sai:
a(1 − b) >\(\frac{1}{4}\)
, b(1 − c) >\(\frac{1}{4}\)
, c(1 − a) >\(\frac{1}{4}\)
.
c) Cho các số thực x, y, z thỏa x.y.z > 0, x +
y + z > 0, xy + xz + yz > 0. Chứng minh
x, y, z là các số dương.
cho a+b+c=1 tìm gtnn
A=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Cho các số thực a, b, c khác 0 thỏa mãn 2ab+bc+2ca=0. Tính giá trị của biểu thức:
\(A=\frac{bc}{8a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
Cho a,b,c>0 chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (1). Áp dụng chứng minh các BĐT sau:
a) \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b) Cho x,y,z>0 tm x+y+z=1. Tìm GTLN của bt \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho a,b,c∈R.CM bđt \(a^2+b^2+c^2\ge ab+bc+ca\) (1). Áp dụng cm các bđt sau:
a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
b)\(\frac{a^2+b^2+c^2}{3}\ge\left(\frac{a+b+c}{3}\right)^2\)
c)\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
d)\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
e)\(\frac{a+b+c}{3}\ge\sqrt{\frac{ab+bc+ca}{3}}vớia,b,c>0\)
f)\(a^4+b^4+c^4\ge abc\) nếu a+b+c=1
Cho a,b>0 . Chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (1). Áp dụng cm các bđt sau:
a)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\) với a,b,c>0
b)\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\) với a,b,c>0
c)Cho a,b,c>0 tm \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\) . CM \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
d) Cho a,b,c là độ dài 3 cạnh của 1 tam giác, p là nửa chu vi .CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)