\(A\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(A\ge\frac{1}{a^2+b^2+c^2}+\frac{4}{2ab+2ac+2bc}+\frac{7}{ab+bc+ca}\)
\(A\ge\frac{\left(1+2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)
\(A\ge\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=30\)
\(A_{min}=30\) khi \(a=b=c=\frac{1}{3}\)