Cho tam giác ABC vuông ở A. Kẻ tia phân giác BD của góc B. Kẻ tia AI vuông với tia BD, tia AI cắt tia BC tại E.
a, Chứng minh: tam giác BIA= tam giác BIE
b, Chứng minh BA=BE
c, Chứng minh: tam giác BED vuông
Tam giác ABC vuông tại A. Kẻ tia phân giác góc B cắt AC tại D. Kẻ AI vuông góc BD ( I thuộc BD ). AI cắt BC tại E.
a/ chứng minh: tam giác BIA= tam giác BIE
b/ chứng minh: góc EAC= góc ABD
c/ chứng minh: tam giác BED vuông
a) Tam giác BIA bằng tam giác BIE theo trường hợp GCG (cạnh chung AI)
b) tam giác ABD vuông tại A nên \(\widehat{ABD}=90^o-\widehat{D_1}\) (1)
Tam giác AID vuông ở I nên \(\widehat{IAD}=90^o-\widehat{D_1}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{IAD}\), hay là \(\widehat{ABD}=\widehat{EAC}\)
c) Theo câu a) tam giác BIA bằng tam giác BIE nên suy ra BA = BE.
Xét 2 ta giác: BAD và BED có AD chung, BA = BE và góc BAD = góc EAD
=> Tam giác BAD = tam giác BED => Tam giác BED vuông ở E
Cho tam giác ABC vuông tại A, kẻ phân giác BD của góc b (D thuộc AC). Từ A kẻ AH vuông góc BD (H thuộc BD), tia AH cắt BC tại E.
A) Chứng minh : Tam giác BHA=tam giác BHE
B) Chứng minh : ED vuông góc BC
C) Kẻ AK vuông góc BC ( K thộc BC). Chứng minh : AE là tia phân giác của góc CAK
các bạn hãy giúp mình làm nha !
a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔBHA=ΔBHE(cmt)
nên BA=BE(hai cạnh tương ứng)
Xét ΔBAD và ΔBED có
BA=BE(cmt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
1.Cho tam giác ABC vuông tại A .AB<AC.Đường phân giác BD.Từ D kẻ DE vuông góc với BC .
a, Chứng minh tam giác ABD =tam giác EBD
b, Chứng minh AB<DC
c, Tia ED cắt tia BA ở N .Gọi M là trung điểm của NC.Chứng minh BDM thẳng hàng
2.Cho tam giác ABC vuông tại A.Kẻ phân giác BD thuộc BC.Kẻ AI vuông góc với BD.AI cắt BC ở E.
a, Chứng minh BE=BA
b, Chứng minh tam giác BED vuông
c, DE cắt BH ở F.Chứng minh AE =FC
hình như thiếu đề bài nha bạn
cho tam giác ABC có AB < BC. trên tia BA lấy điểm D sao cho BC = BD. Tia phân giác B cắt AC ở E. Gọi K là trung điểm của DC
a) chứng minh tam giác BED = tam giác BEC
b) chứng minh EK vuông góc với DC
c) kẻ AH vuông góc với DC, ( H thuộc DC ). tam giác ABC cần thêm điều kiện gì để góc DAH = 45 độ
a: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
b: Ta có: ΔBDE=ΔBCE
=>ED=EC
=>E nằm trên đường trung trực của DC(1)
Ta có: BD=BC
=>B nằm trên đường trung trực của CD(2)
Ta có: KD=KC
=>K nằm trên đường trung trực của CD(3)
Từ (1),(2),(3) suy ra B,E,K thẳng hàng
=>B,E,K cùng nằm trên đường trung trực của DC
=>EK\(\perp\)DC
c: ΔAHD vuông tại H có \(\widehat{DAH}=45^0\)
nên ΔAHD vuông cân tại H
Xét ΔBDC có BD=BC
nên ΔBCD cân tại B
mà \(\widehat{BDC}=45^0\)
nên ΔBCD vuông cân tại B
=>\(\widehat{ABC}=90^0\)
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=AB. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh: tam giác BAE = tam giác BDE. Suy ra: AE = ED.
b) Gọi F là giao điểm của tia DE và tia BA. Chứng minh: tam giác FEC cân.
c) Gọi K là trung điểm của FC. Chứng minh: B, E, K thẳng hàng.
Cho tam giác abc vuông tại a, AB<BC. BD là tia phân giác của góc B, D thuộc AC.Từ D kẻ DE vuông góc BC tại E.
a) Chứng minh tam giác ABC=tam giác EBD
b) Kéo dài DE và AB sao cho cắt nhau tại F. Chứng minh tam giác CDF cân
c) Chứng minh DE<DF
Cho tam giác ABC (góc A=90). D thuộc BC sao cho BD=BA. Qua D kẻ đường thăng d vuông góc BC cắt tia đối của tia AB tại E. Chứng minh:
a)Tam giác BEC cân
b)ED cắt AC tại H. Chứng minh BH vuông góc EC
c)Tia Bx vuông góc BA, ED cắt Bx tại K
Chứng minh tam giác BHK cân.
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).