So sánh tổng
B=25(2+22+23+...+212)
Với 100000
So sánh: 20\21; 21\22; 22\23; 23\24; 24\25
20<21
21<22
22<23
23<24
24<25
So Sánh: E=3/21+3/22+3/23+3/24+3/25+...+3/29+3/30 với M=3/2
Vì: \(\frac{3}{21}=\frac{3}{21}\)
\(\frac{3}{22}\) < \(\frac{3}{21}\)
\(\frac{3}{23}\) < \(\frac{3}{21}\)
\(\frac{3}{24}\)<\(\frac{3}{21}\)
\(\frac{3}{25}\)< \(\frac{3}{21}\)
.....
\(\frac{2}{29}\)<\(\frac{3}{21}\)
\(\frac{2}{30}\)<\(\frac{3}{21}\)
Nên \(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{21}.10\)
Ta có: \(\frac{3}{21}.10\) = \(\frac{10}{7}\)
Mà \(\frac{10}{7}\) < \(\frac{3}{2}\)
=>\(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{2}\)
Vậy E < M
so sánh \(2^{25}-2^{24}+2^{23}vs2^{23}-2^{22}+2^{21}\)
ta có: 2^25 - 2^24 + 2^23 = 2^23 . (2^2-2+1) = 2^23.3
2^23-2^22 + 2^21 =2^21.(2^2-2+1) = 2^21.3
=> 2^23.3 > 2^21.3
=> 2^25 - 2^24 + 2^23 > 2^23 - 2^22 + 2^21
So sánh tổng S với 251
S = 1+2+22+23+...+2501+2+22+23+...+250
Mai mk thi r làm bài này Giúp mình với. HELP ME !!! thanks các bạn
có phép trừ ko
nếu ko có thì tổng đó lớn hơn 251
rõ ràng mà
So sánh các phân số sau:
a) \(\dfrac{23}{27}\) và \(\dfrac{22}{29}\)
b) \(\dfrac{15}{25}\) và \(\dfrac{25}{49}\)
a) Ta có \(\dfrac{23}{27}>\dfrac{23}{29};\dfrac{23}{29}>\dfrac{22}{29}\)
Vậy \(\dfrac{23}{27}>\dfrac{22}{29}\)
b) Ta có \(\dfrac{15}{25}=1-\dfrac{2}{5}\)
\(\dfrac{25}{49}=1-\dfrac{24}{49}\)
Vì \(\dfrac{2}{5}=\dfrac{24}{60}< \dfrac{24}{49}\)
Vậy \(\dfrac{15}{25}>\dfrac{25}{49}\)
23/27 lớn hơn 22/29
15/25 lớn hơn 25/49
bài 1:cho S = 1+2+22+23+...+22023
a. tính tổng
b.cho B = 22024 so sánh S và B
bài 2: tính tổng H=3+32+33+...+32022
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Bài 2
H = 3 + 3² + 3³ + ... + 3²⁰²²
⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³
⇒2H = 3H - H
= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)
= 3²⁰²³ - 3
⇒ H = (3²⁰²³ - 3) : 2
2, so sánh các số hữu tỉ
a, -22/35 và -103/177
b,-17/23 và -25/31
c,-18/91 và -23/114
So sánh các phân số
a, 23/27 và 22/29
b, 12/25 và 25/49
a) Có : 23/27>22/27
Mà 22/27>22/29
=> 23/27>22/29
b) Có : 12/25=24/50
24/50<24/49;24/49<25/49
=> 12/25<25/49
a,23/27>23/29
22/29<23/29
=>22/29<23/29<23/27
=>22/29<23/27
kl:....(kết luận)
So sánh 1/21+1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29+1/30 với 1/3
Số số hạng của tổng A là : \(\dfrac{30-21}{1}+1=10\left(sh\right)\)
`=>A=\underbrace{1/21+1/22+...+1/30}_{10sh}>\underbrace{1/30+1/30+1/30+...+1/30}_{10sh}`
`=>A>(1)/(30).10`
`=>A>10/30`
`=>A>1/3`
`=>đpcm`