cho hình thangABCD(AB//CD).Tia phân giác của góc B và C cắt nhau ở I.Cm:góc BIC=90 độ
Cho tứ giác ABCD có góc A = góc C =90 độ , các tia DA và CB cắt nhau tại E, các tia AB và CD cắt nhau tại F
a, c/m góc E = góc F
b, tia phân giác của góc E cắt AB, CD theo thứ tự ở G và H. Tia phân giác của góc F cắt BC, AD theo thứ tự ở I và K. C/m GHIK là hình thoi
giúp mk vs
Cho tứ giác ABCD có góc A =góc C=90 độ, các tia DA và CB cắt nhau tại E, các tia AB và CD cắt nhau tại F.
a) Chứng minh rằng góc E= góc F
b) tia phân giác của góc E cắt AB, CD theo thứ tự ở I và K.Chứng minh rằng GKHI là hình thoi
Giúp mk với
Bài 3 Cho hình thang vuông ABCD có A = D = 90 độ, I là trung điểm AD và CI là tia phân giác góc C. Gọi H là chân đường vuông góc kẻ từ I đến BC. CMR góc AHD bằng 90 độ và BIC bằng 90 độ và CMR AB+CD=BC
Bài 4: Cho tam giác ABC vuông tại A, AB = 14 cm, BC = 50 cm. Đường trung trực của AC cắt tia phân giác góc B ở K. CMR góc BKC vuông và tính độ dài KB
cho tam giác ABC có A=60 độ,các tia phân giác các góc B và C cắt nhau ở I
a)Tính số đo của góc BIC
b)Tia BI cắt AC tại D;tia CI cắt AB tại E,tia phân giác của góc BIC cắt BC tại F.Cm:góc EIB=góc FIB suy ra:tam giác BIE=BIF
c)Cm:tam giác CID=CIF và IE=ID=IF
d)Cm:BC=BE+CD
a)
Tam giác ABC có:
BAC + ABC + ACB = 1800
600 + ABC + ACB = 1800
ABC + ACB = 1800 - 600
ABC + ACB = 1200
BI là tia phân giác của ABC
=> ABI = IBC = ABC : 2
CI là tia phân giác của ACB
=> ACI = CIB = ACB : 2
Tam giác IBC có:
BIC + IBC + ICB = 1800
BIC + ABC : 2 + ACB : 2 = 1800
BIC + \(\frac{1}{2}\) . (ABC + ACB) = 1800
BIC + 1200 : 2 = 1800
BIC + 600 = 1800
BIC = 1800 - 600
BIC = 1200
b)
FI là tia phân giác của BIC
=> CIF = FIB = BIC : 2 = 1200 : 2 = 600
EIB + BIC = 1800
EIB + 1200 = 1800
EIB = 1800 - 1200
EIB = 600
mà FIB = 600 (chứng minh trên)
=> EIB = FIB
Xét tam giác EIB và tam giác FIB có:
EIB = FIB (chứng minh trên)
IB chung
IBE = IBF (IB là tia phân giác của ABC)
=> Tam giác EIB = Tam giác FIB (g.c.g)
c)
EIB = DIC (2 góc đối đỉnh)
CIF = FIB (FI là tia phân giác của BIC)
mà EIB = FIB (chứng minh trên)
=> DIC = CIF
Xét tam giác CIF và tam giác CID có:
FIC = DIC (chứng minh trên)
IC chung
ICF = ICD (IC là tia phân giác của ACB)
=> Tam giác CIF = Tam giác CID (g.c.g)
=> IF = ID (2 cạnh tương ứng)
mà IF = IE (Tam giác EIB = Tam giác FIB)
=> IF = IE = ID
d)
CF = CD (Tam giác CIF = Tam giác CID)
EB = FB (Tam giác EIB = Tam giác FIB)
=> EB + CD = FB + CF = BC
tứ giác ABCD có góc A bằng góc C và bằng 90 độ. Các tia phân giác của DA và CB cắt nhau tại E, các tia phân giác của AB và CD cắt nhau tại F.
a/ chứng minh góc E bằng góc F ( phần này mình tự làm đc rồi)
b/Phân giác của góc E cắt AB, CD lần lượt ở G và H. Phân giác của góc F cắt BC, AD theo thứ tự ở I và K. Chứng minh GKHI là hình thoi
hình thangABCD có AB//CD . AB=a,BC=b,CD=c,ĐÃ=đ.các đường phân giác của góc ngoài đỉnh A và D cắt nhau tại M , các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N
a, CMR MN//CD
b, tính độ dài MN theo a,b,c,đ [a,b,c,d cùng đơn vị đo]
a) Gọi E, F lần lượt là giao điểm của AM và CD, BN và CD
Ta có : AB//CD (gt) => E = A1(so le trong)
Mà A1=A2(gt)
Nên A2 = E
Xét ΔADE cân tại D, có DM là p/giác nên DM đồng thời là trung tuyến
=>AM= EM
Chứng mih tương tự, ta được :
BN = FN
Xét hình thang ABEF có : AM=BN(cm trên)
BN=FN(cm trên)
Do đó MN là đường TB của HÌNH thang ABEF
=> MN=\(\frac{\text{EF}+AB}{2}\)
MN//AB//EF
Vậy MN// CD(đpcm)
b)Do ED= AD; BC=FC
Mà ED + DC + CF = EF
Nên AD + DC + BC = EF
Lại có MN\(\frac{\text{EF}+AB}{2}\) (CM trên)
Suy ra MN=\(\frac{AD+DC+BC+AB}{2}\) = \(\frac{a+b+c+d}{2}\)
Cho tam giác ABC. Góc a bằng 90 độ. Tia phân giác BM,CN của góc b, góc c cắt nhau ở I. Tính góc BIC
Trong tam giác BIC có góc B1 + góc C1 + góc I1 = 180 độ
\(\Rightarrow\) góc I1 = 180 độ - (góc B1 + góc C1)
= 180 độ - (góc ABC/2 + góc ACB/2)
= 180 độ - (góc ABC + góc ACB)/2
= 180 độ - (180 độ - góc A)/2
= 180 độ - (90 độ/2)
= 180 độ - 45 độ
= 135 độ
Vậy góc BIC = 135 độ
Cho tam giác ABC có góc A = 60 độ. Các tia phân giác của góc B và góc C cắt nhau ở I. các tia phân giác ngoài của góc B và góc C cắt nhau ở K. Tia phân giác góc B cắt tia phân giác góc ngoài ở đỉnh C tại E. Tính góc BIC, BKC, BEC.
Cho tam giác ABC có góc A bằng 60 độ. Các tia phân giác của góc B và góc C cắt nhau ở I. Các tia phân giác ngoài của góc B và góc C cắt nhau ở K. Tia phân giác góc B cắt tia phân giác ngoài ở đỉnh C tại E. Tính góc BIC, BKC, BEC
Trong tam giác ABC có góc BAC + ABC + ACB = 180 độ
\(\Rightarrow\) góc ABC + góc ACB = 180 độ - góc BAC = 180 độ - 60 độ = 120 (độ)
Ta có góc IBC + góc ICB = góc ABC/2 + góc ACB/2 = (góc ABC + góc ACB)/2 = 120 độ/2 = 60 (độ)
Trong tam giác IBC có góc BIC + góc IBC + góc ICB = 180 độ
\(\Rightarrow\) góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Trong tam giác ABC có góc BAC + ABC + ACB = 180 độ
⇒ góc ABC + góc ACB = 180 độ - góc BAC = 180 độ - 60 độ = 120 (độ)
Ta có góc IBC + góc ICB = góc ABC/2 + góc ACB/2 = (góc ABC + góc ACB)/2 = 120 độ/2 = 60 (độ)
Trong tam giác IBC có góc BIC + góc IBC + góc ICB = 180 độ
⇒ góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 99 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
Cho tứ giác ABCD có góc A = góc C = 90 độ , các tia DA và CB cắt nhau tại E , các tia AB và DC cắt nhau tại F
a, C/m E = F
b, Tia phân giác của góc E cắt AB ,CD theo thứ tự ở G và H . Tia phân giác của góc F cắt BC ,AD theo thứ tự ở I và K . Chứng minh GKHI là hình thoi