Những câu hỏi liên quan
rrrge
Xem chi tiết
Lê Tài Bảo Châu
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Bình luận (0)
Trần Thanh Phương
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
cao nam anh
20 tháng 2 2021 lúc 17:33

LOADING...

Bình luận (0)
 Khách vãng lai đã xóa
Hung Trieu
Xem chi tiết
hoàng
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2023 lúc 17:48

\(P=\dfrac{6x+6y+2xy}{2}=\dfrac{6x+6y+2xy+10-10}{2}\)

\(=\dfrac{6x+6y+2xy+2\left(x^2+y^2\right)+6}{2}-5\)

\(=\dfrac{\left(x+y+2\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-5\ge-5\)

\(P_{min}=-5\) khi \(x=y=-1\)

Bình luận (3)
lê hồng thanh hường
Xem chi tiết
Tuyet
30 tháng 5 2023 lúc 14:47

BẠN THAM KHẢO :

loading...

Bình luận (0)
Viet Tuan Nguyen
Xem chi tiết
Best monument
Xem chi tiết
alibaba nguyễn
15 tháng 5 2018 lúc 9:05

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Leftrightarrow xy\ge4\)

\(\Rightarrow A=xy+2017\ge4+2017=2021\)

Bình luận (0)
Minh Hà Tuấn
Xem chi tiết
ngonhuminh
29 tháng 12 2016 lúc 23:05

\(4x^2-2+\frac{1}{4x^2}+\left(2x\right)^2+y^2=4\)

\(\left(\left(2x\right)^2-\frac{1}{\left(2x\right)^2}\right)^2+\left(\left(2x\right)-y\right)^2=4-2\left(2x\right)y\)

\(VT\ge0\) đẳng thức khi: 2x=+-1;  2x=y; 

\(\Rightarrow4-4xy\ge0\Rightarrow xy\le1\)

DS: x=+-1/2; y+-1

Bình luận (0)
khong có
Xem chi tiết
Trịnh Dũng
Xem chi tiết
Kiệt Nguyễn
22 tháng 2 2020 lúc 15:29

\(x+y=1\Rightarrow2\sqrt{xy}\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\)

\(\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

Áp dụng bđt cauchy cho 3 số dương:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{xy}\ge3\sqrt[3]{\frac{1}{x^2}.\frac{1}{y^2}.\frac{1}{xy}}=3.\frac{1}{xy}\ge3.4=12\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa