tìm x,y thuoc N:
X . Y = X+Y
tìm cặp x;y nguyên thỏa mãn:x^2+y^2=xy+x+y
\(x^2+y^2=xy+x+y\Leftrightarrow2x^2+2y^2=2xy+2x+2y\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=2....\)
1)Tìm x,y thuoc Z thoa man dong thoi
x^3+y^3=1 x^7+y^7=x^4+y^4
2)Cho A=y^5 - 5y^3 +4y y thuoc Z
CM nếu y ko chia hết 3 thì A chia hết 360
3)Tìm P(x) bậc 4 thỏa mãn
P(-1)=0 , P(x)-P(x-1)=x*(x+1)*(2x+1) voi x thuoc R
1, cho 3 số thực dương x,y,z thỏa mãn:x+y+z=9
Tìm GTNN của biểu thức: S=\(\frac{x^3}{x^2+xy+y^2}+\frac{y^3}{y^2+yz+z^2}+\frac{z^3}{z^2+zx+x^2}\)
Ta sẽ chứng minh: \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\) với a;b dương
Thật vậy, BĐT tương đương:
\(3a^3\ge\left(2a-b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng: \(\Rightarrow S\ge\frac{2x-y}{3}+\frac{2y-z}{3}+\frac{2z-x}{3}=\frac{x+y+z}{3}=3\)
\(S_{min}=3\) khi \(x=y=z=3\)
1)Tìm x,y thuoc Z thoa man dong thoi
x^3+y^3=1 x^7+y^7=x^4+y^4
2)Cho A=y^5 - 5y^3 +4y y thuoc Z
CM nếu y ko chia hết 3 thì A chia hết 360
3)Tìm P(x) bậc 4 thỏa mãn
P(-1)=0 , P(x)-P(x-1)=x*(x+1)*(2x+1) voi x thuoc R
Cho x,y số thực thỏa mãn:x2 +2xy+7(x+y)+2y2+10=0
Tìm Min và Max: S=x+y+3
Ta có: \(x^2+2xy+7(x+y)+2y^2+10=0\)
<=> \((x^2+2xy+y^2)+7(x+y)+y^2+10=0\)
<=>(1)
Đặt t=x+y
=>(1)<=>\(y^2+t^2+7t+10=0
\)
Phương trình có nghiệm khi \(\Delta\)'\(\ge\)0
<=>\(t^2+7t+10=0
\) \(\le\)0
<=> -5\(\le\)t\(\le\)-2
=>Max S=1 khi t=-2<=>y=0;x=-2
Min S=-2 khi t=-5<=>y=0;x=-5
tìm x, y, z thuoc Z biết /x-y/+/y-z/+/x-z/=2019
ve 2 duong thang x , y va cac diem A,B,M,N thoa man dong thoi cac dieu kien : A thuoc x , y ;B thuoc x va ko thuoc y ; M thuoc y va ko thuoc x ; N kothuoc x , y
bn ko viết dấu ra à?
hễ trả lời thì nhắn tin cho mik nha!
Thế bạn ko biết dịch ra à . Cứ tưởng ai trả lời . Ai ngờ lại đi hỏi mấy câu ngớ ngẩn !
x/9-3/y=1/18
tìm x,y biết x,y thuoc N
Tìm x,y,z thuoc Z ,biêt: |x|+|y|+|z|=0