Tìm x , y là số nguyên sao cho :
( x +1 )^2 + ( y +1 )^2 +( x - y)^2 = 2
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
1)Tìm x;y là số nguyên dương sao cho x2 +3y và y2 +3x đều là số chính phương
2) Tìm x; y là các số tự nhiên thỏa mãn: 0<x<9; 1<y<9 sao cho xxyy = x+1,x+1. y-1,y-1
Tìm số nguyên x ,y sao cho (x+1)2+(y+1)2+(x-y)2=2
Tìm các số nguyên x, y sao cho (x-3).(y+2)=5
Tìm các số nguyên x, y sao cho (x-2).(y+1)=5
Ai đó giúp mk với
a) Ta có: (x-3)(y+2)=5
nên (x-3) và (y+2) là ước của 5
\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)
b) Ta có: (x-2)(y+1)=5
nên x-2 và y+1 là các ước của 5
\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)
1)Tìm tất cả các số nguyên dương n sao cho :2n-1 chia hết cho 7
2)Tìm số nguyên x,y sao cho :|x-1|+|x-2|+|y-3|+|y-4|=3
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
Tìm số nguyên x, y sao cho (x+1)^2+(y+1)^2+(x-y)^2=2
\(\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2=2\Rightarrow\left(x+1\right)^2\le2\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x+1\right)^2=1\end{cases}}\)
- \(\left(x+1\right)^2=0\Leftrightarrow x=-1\).
Với \(x=-1\): \(\left(y+1\right)^2+\left(y+1\right)^2=2\Leftrightarrow\orbr{\begin{cases}y=-2\\y=0\end{cases}}\).
- \(\left(x+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\).
Với \(x=0\): \(1+\left(y+1\right)^2+y^2=2\Leftrightarrow2y^2+2y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\).
Với \(x=-2\): \(1+\left(y+1\right)^2+\left(y+2\right)^2=2\Leftrightarrow2y^2+6y+4=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=-2\end{cases}}\).
Vậy \(\left(x,y\right)\in\left\{\left(0,0\right),\left(0,-1\right),\left(-2,-1\right),\left(-2,-2\right),\left(-1,-2\right),\left(-1,0\right)\right\}\).
Tìm ba số nguyên tố liên tiếp x, y, z (với x < y < z) sao cho số A = x^2 + y^2 + z^2 là 1 số nguyên tố
Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1
Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố
Do đó trong ba p, q, r số phải có là 3
\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)
\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)
Vậy...
Tìm x,y thuộc n sao để x^3y-x^2y+4x^2+5xy-y^2=0
tìm số nguyên x,y sao cho x(x^2-y)+y+3)(x^2+1)=0