Tìm GTNN của :A = m2 - 4mp+ 5p2 +10m - 22p +28
a) Biến tổng sau : A=\(3x^2-27x+54\) thành tích
b) Tìm m và p sao cho A = \(m^2-4mp+5p^2+10m-22p+28\) đạt GTNN . Tìm GTNN ấy
Tìm m và p sao cho : A = m2 - 4mp =5p2 +10m -22p +28 đạt giá trị nhỏ nhất . Tính giá trị ấy
A = (m2 -4mp + 4p2 ) + (p2 -2p + 1) + 27 + 10m - 20p = (m-2p)2 + (p-1)2 27 + 10(m-2p)
Đặt X = m-2p.
Ta có A=x2 + 10X + 27 + (p-1)2 = (X2 + 10X + 25) + (p-1)2 + 2 = (X+5)2 + (p-1)2 + 2
Ta thấy: (X + 5)^2> 0 với m, p; (p-1)^2> 0 p Do đó: A đạt giá trị nhỏ nhất khi: Vậy Min A=2 khi m=-3; p=1
Có bài số ko hỏi tớ-_-
tìm số m, p, thỏa mãn : m^2 +5p^2 = 4mp - 10m +22p +25
a ) Phân tích đa thức sau thành nhân tử : P (x ) = 3x^2-27x+54
Với giá trị nào thì P (x) nhận giá trị không âm ?
b ) Tìm m và p sao cho biểu thức : A = m^2-4mp+5p^2+10m-22p+28 đạt GTNN . Tính giá trị ấy ?
a ) \(P\left(x\right)=3x^2-27x+54=3\left(x^2-9x+15\right)\)
\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right].\)
\(\Rightarrow P\left(x\right)=3\left(x-3\right)\left(x-6\right)\)
Ta có : \(P\left(x\right)\ge0\Leftrightarrow\left(x-3\right)\left(x-6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x-6\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x-6\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge6\\x\le3\end{matrix}\right.\)
Vậy \(P\left(x\right)\ge0\Leftrightarrow x\le3\) hoặc \(x\ge6\)
b ) \(A=m^2-4mp+5p^2+10m-22p+28\)
\(=m^2-4mp+4p^2+10m-20p+p^2-2p+1+27\)
\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25+2\)
\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)
Vậy GTNN của A là 2 khi và chỉ khi \(\left\{{}\begin{matrix}p-1=0\\m-2p+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=1\\m=-3\end{matrix}\right..\)
Vậy ...............
\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right]\)
m2+5p2 =4mp-10m+22p+25
Ta có: Diện tích hình chữ nhật bằng (1) + (2)
Diện tích hình vuông bằng (1) + (3)
Mà diện tích của (2) + (4) bằng diện tích (3) vì cùng là hình chữ nhật có một cạnh d còn cạnh kia bằng cạnh hình vuông.
Suy ra Diện tích hình vuông AEFG hơn diện tích hình chữ nhật ABCD một phần bằng diện tích (4).
Vậy trong hai hình: hình chữ nhật và hình vuông có cùng chu vi, hình vuông có diện tích lớn hơn.
*) Bây giờ ta so sánh tiếp xem trong hai hình: hình vuông và hình tròn có cùng chu vi (là độ dài sợi dây), hình nào có diện tích lớn hơn. Gọi chiều dài sợi dây là a.
Nếu khoanh sợi dây thành hình vuông ta được hình vuông có cạnh là a4 , diện tích hình vuông là a4 ×a4 =a×a16
Nếu khoanh sợ dây thành hình tròn, ta được hình tròn có bán kính là a2×3,14 , diện tích hình tròn là: 3,14×(a2×3,14 )×(a2×3,14 )=a×a12,56 .
Vì a×a12,56 >a×a16 nên diện tích hình tròn lớn hơn diện tích hình vuông có cùng chu vi.
Kết luận: Trong các hình: hình chữ nhật, hình vuông, hình tròn có cùng chu vi, hình tròn có diện tích lớn nhất. Vậy Bờm nên khoang sợi dây thành hình tròn thì được phần đất có diện tích lớn nhất.
Tìm giá trị nhỏ nhất của biểu thức sau:
D = m2 - 4mp + 5p2 + 10m - 22p + 20
Mình chưa bt làm câu này ạ
Answer:
\(D=m^2-4mp+5p^2+10m-22p+20\)
\(=m^2-4mp+4p^2+p^2+10m-20p-2p+1+19\)
\(=\left(m^2-4mp+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+19\)
\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25-6\)
\(=[\left(m-2p\right)^2+10\left(m-2p\right)+25]+\left(p-1\right)^2-6\)
\(=\left(m-2p+5\right)^2+\left(p-1\right)^2-6\)
\(\forall m;p\) có \(\left(m-2p+5\right)^2+\left(p-1\right)^2-6\ge-6\) hay \(D\ge-6\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(m-2p+5\right)^2=0\\\left(p-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}m-2p+5=0\\p-1=0\end{cases}}\Rightarrow\hept{\begin{cases}m-2p+5=0\\p=1\end{cases}}\Rightarrow\hept{\begin{cases}m-2.1+5=0\\p=1\end{cases}}\Rightarrow\hept{\begin{cases}m=-3\\p=1\end{cases}}\)
Vậy giá trị nhỏ nhất của biểu thức \(D=-6\) khi \(\hept{\begin{cases}m=-3\\p=1\end{cases}}\)
Xác định m,p thỏa mãn: m2+5p2=4mp-10m+22p+25
Với mọi , có:
hay
Dấu "" xảy ra khi:
Vậy của là khi
Tìm các số m,p thỏa mãn:m^2+5p^2=4mp-10m+22p+25
\(m^2+5p^2=4mp-10m+22p+25\)
\(\Leftrightarrow m^2+5p^2-4mp+10m-22p-25=0\)
\(\Leftrightarrow\left(m^2-4mp+10m+4p^2-20p+25\right)+\left(p^2-2p+1\right)-51=0\)
\(\Leftrightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2-51=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(m-2p+5\right)^2\ge0\\\left(p-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2\ge0\)
\(\Rightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2-51\ge-51\)
Xảy ra khi \(\left\{{}\begin{matrix}m-2p+5=0\\p-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\p=1\end{matrix}\right.\)
Hình như là nhầm đề mình chỉ tìm được \(m\leq14\)
Mình cũng nghĩ thế. Bạn giải thử lại rõ ràng đi
a) Biến tổng sau thành tích : A=\(3x^2-27x+54\) thành tích
Tìm x để A >=0
b) Tìm m và p sao cho A=\(m^2-4mp+5p^2+10m-22p+28\) đạt giá trị nhỏ nhất . Tìm giá trị nhỏ nhất