\(m^2+5p^2=4mp-10m+22p+25\)
\(\Leftrightarrow m^2+5p^2-4mp+10m-22p-25=0\)
\(\Leftrightarrow\left(m^2-4mp+10m+4p^2-20p+25\right)+\left(p^2-2p+1\right)-51=0\)
\(\Leftrightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2-51=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(m-2p+5\right)^2\ge0\\\left(p-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2\ge0\)
\(\Rightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2-51\ge-51\)
Xảy ra khi \(\left\{{}\begin{matrix}m-2p+5=0\\p-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\p=1\end{matrix}\right.\)
Hình như là nhầm đề mình chỉ tìm được \(m\leq14\)
Mình cũng nghĩ thế. Bạn giải thử lại rõ ràng đi