Cho tam giác ABC cân tại A, có BD, CE là phân giác. Chứng minh tứ giác BEDC là hình thang cân.
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE. Chứng minh tứ giác BEDC là hình thang cân.
Lời giải:
Vì $D$ là trung điểm $AC, $E$ là trung điểm $AB$ nên $ED$ là đường trung bình ứng với cạnh $BC$ của tam giác $ABC$
$\Rightarrow ED\parallel BC$
$\Rightarrow BEDC$ là hình thang.
Mà 2 góc ở đáy $\widehat{B}=\widehat{C}$ (do tam giác $ABC$ cân tại $A$)
$\Rightarrow BEDC$ là hình thang cân.
Cho tam giác ABC cân tại A,các đường cao BD,CE (D thuộc AC,E thuộc AB).Chứng minh
a)Tam giác BDC= tam giác CEB
b)Tứ giác BEDC là hình thang cân
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>EB=DC
AE+EB=AB
AD+DC=AC
mà EB=DC và AB=AC
nên AE=AD
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có ED//BC
nên BEDC là hình thang
Hình thang BEDC có \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D thuộc AC, E thuộc AB). Chứng minh BEDC là hình thang cân; Tính các góc của hình thang cân BEDC, biết góc = 50 độ
a: Xét ΔABC có
BD là đường phân giác
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{AC}{BC}\left(1\right)\)
Xét ΔACB có
CE là đường phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
hay ED//BC
Xét tứ giác BEDC có ED//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
cho tam giác ABC cân tại A, các đường phân giác BD, CE. Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.
Bạn vào
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
a: Xét ΔADB và ΔAEC có
góc BAD chung
AB=AC
góc ABD=góc ACE
Do đó: ΔADB=ΔAEC
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
=>BEDC là hình thang
mà góc EBC=góc DCB
nên BEDC là hình thang cân
Xét ΔEDB có góc EDB=góc EBD(=góc DBC)
nên ΔEDB cân tại E
=>BE=ED=DC
Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D ∈ AC, E ∈ AB). Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.
- Chứng minh tứ giác BCDE là hình thang cân:
+ ΔABC cân tại A
BD là phân giác của
CE là phân giác của
+ Xét ΔAEC và ΔADB có:
⇒ ΔAEC = ΔADB
⇒ AE = AD
Vậy tam giác ABC cân tại A có AE = AD
Theo kết quả bài 15a) suy ra BCDE là hình thang cân.
- Chứng minh ED = EB.
ED // BC ⇒ (Hai góc so le trong)
Mà ⇒ ΔEDB cân tại E ⇒ ED = EB.
Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên.
Cho tam giác ABC cân tại A, các đường phân giác BD,CE (D thuộc AC, E thuộc AB). Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên
Hai tam giác ABD và ACE đồng dạng và có 2 cạnh AB,AC bằng nhau nên bằng nhau => AD=AE=> DE song song BC và DC=BE =>BEDC là hình thang cân
Hai góc sole DEC và ECB bằng nhau mà ECD=ECB => DEC = ECD => Tam giác DEC cân => DE=DC => BEDC có đáy nhỏ bằng cạnh hai bên.
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE. Chứng minh: a) Tứ giác BEDC là hình thang cân. b) BE = ED = DC. Hinh tam giac ABC (AB=AC) phan giac BD Va CE goiI la trung diem cua ED , O la giao diem cua BD va CE
a: Xét ΔABD và ΔACE có
\(\widehat{ABD}=\widehat{ACE}\)
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà BD=CE
nên BEDC là hình thang cân
b: Xét ΔEBD có \(\widehat{EBD}=\widehat{EDB}\left(=\widehat{DBC}\right)\)
nên ΔEBD cân tại E
Suy ra: ED=EB
mà EB=DC
nên BE=ED=DC
Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D thuộc AC, E thuộc AB). Chứng minh rằng BEDC là hình thang cân có đáy nhò bằng cạnh bên.
Ta có : tam giác ABC cân tại A
BD là phân giác của góc ABC
CE là phân giác của góc ACB
=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)
Xét tam giác ABD và tam giác ACE :
BD=CE (cmt)
góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)
AB=BC (tam giác ABC cân tại A)
Suy ra: tam giác ABD= tam giác ACE (c-g-c)
=>AD=AE ( 2 cạnh tương ứng)
=>tam giác ADE cân tại A
Mà tam giác ABC cũng cân tại A nên:
góc ABC = góc ACB= góc ADE= goác ADE
Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:
ED//BC
=>BEDC là hình thang
Mà BD=CE
nên: BEDC là hình thang cân(1)
Ta có: ED//BC => góc DEC = góc ECB
Mà góc ECB= góc DCE ( CE là p/g của góc ACE)
=> góc DEC=góc DCE
=> tam giác DEC cân tại D
=>ED=DC (2)
Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.
Ta có : tam giác ABC cân tại A
BD là phân giác của góc ABC
CE là phân giác của góc ACB
=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)
Xét tam giác ABD và tam giác ACE :
BD=CE (cmt)
góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)
AB=BC (tam giác ABC cân tại A)
Suy ra: tam giác ABD= tam giác ACE (c-g-c)
=>AD=AE ( 2 cạnh tương ứng)
=>tam giác ADE cân tại A
Mà tam giác ABC cũng cân tại A nên:
góc ABC = góc ACB= góc ADE= goác ADE
Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:
ED//BC
=>BEDC là hình thang
Mà BD=CE
nên: BEDC là hình thang cân(1)
Ta có: ED//BC => góc DEC = góc ECB
Mà góc ECB= góc DCE ( CE là p/g của góc ACE)
=> góc DEC=góc DCE
=> tam giác DEC cân tại D
=>ED=DC (2)
Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.
Ta có : tam giác ABC cân tại A
BD là phân giác của góc ABC
CE là phân giác của góc ACB
=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)
Xét tam giác ABD và tam giác ACE :
BD=CE (cmt)
góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)
AB=BC (tam giác ABC cân tại A)
Suy ra: tam giác ABD= tam giác ACE (c-g-c)
=>AD=AE ( 2 cạnh tương ứng)
=>tam giác ADE cân tại A
Mà tam giác ABC cũng cân tại A nên:
góc ABC = góc ACB= góc ADE= goác ADE
Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:
ED//BC
=>BEDC là hình thang
Mà BD=CE
nên: BEDC là hình thang cân(1)
Ta có: ED//BC => góc DEC = góc ECB
Mà góc ECB= góc DCE ( CE là p/g của góc ACE)
=> góc DEC=góc DCE
=> tam giác DEC cân tại D
=>ED=DC (2)
Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.
Cho tam giác ABC cân tại A, cá đường phân giác BD,CE (D thuộc AC, E thuộc AB )
Chứng minh rằng BEDC là hình thang cân có đáy nhỏ bằng cạnh bên
Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D thuộc AC, E thuộc AB). Chứng minh rằng BEDC là hình thang cân có đáy nhò bằng cạnh bên.
Ta có : tam giác ABC cân tại A
BD là phân giác của góc ABC
CE là phân giác của góc ACB
=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)
Xét tam giác ABD và tam giác ACE :
BD=CE (cmt)
góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)
AB=BC (tam giác ABC cân tại A)
Suy ra: tam giác ABD= tam giác ACE (c-g-c)
=>AD=AE ( 2 cạnh tương ứng)
=>tam giác ADE cân tại A
Mà tam giác ABC cũng cân tại A nên:
góc ABC = góc ACB= góc ADE= goác ADE
Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:
ED//BC
=>BEDC là hình thang
Mà BD=CE
nên: BEDC là hình thang cân(1)
Ta có: ED//BC => góc DEC = góc ECB
Mà góc ECB= góc DCE ( CE là p/g của góc ACE)
=> góc DEC=góc DCE
=> tam giác DEC cân tại D
=>ED=DC (2)
Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.
Bạn tự vẽ hình nha ==''
ABD = DBC = ABC/2 (BD là tia phân giác của ABC)
ACE = ECB = ACB/2 (CE là tia phân giác của ACB)
mà ABC = ACB (tam giác ABC cân tại A)
=> ABD = ACE
Xét tam giác ABD và tam giác ACE có:
BAC là góc chung
AB = AC
ABD = ACE (chứng minh trên)
=> Tam giác ABD = Tam giác ACE (g.c.g)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
=> AED = 900 - EAD/2
mà ABC = 900 - BAC/2 (tam giác ABC cân tại A)
=> AED = ABC
mà 2 góc này ở vị trí đồng vị
=> ED // BC
=> BEDC là hình thang
mà ABC = ACB (tam giác ABC cân tại A)
=> BEDC là hình thang cân
ED // BC
=> EDB = DBC (2 góc so le trong)
mà DBC = ABD (BD là tia phân giác của ABC)
=> EDB = ABD
=> Tam giác EBD cân tại E
=> EB = ED
=> BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.