Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
_ Yuki _ Dễ thương _
Xem chi tiết
Phạm Nguyễn Tất Đạt
30 tháng 11 2016 lúc 5:59

Ta có:\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\)

\(\Leftrightarrow2^5\left(\frac{1}{4}\right)^a< 2^5\cdot\left(\frac{1}{2^{10}}\right)^{12}\)

\(\Leftrightarrow\left(\frac{1}{4}\right)^a< \left(\frac{1}{2^{10}}\right)^{12}\)

\(\Leftrightarrow\left(\frac{1}{2^{2a}}\right)< \left(\frac{1}{2^{10\cdot12}}\right)\)

\(\Leftrightarrow2a>120\)

\(\Leftrightarrow a>60\)

Mà a là số nguyên nhỏ nhất nên a=61

Tiểu Sam Sam
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Nguyễn Ngọc Anh Minh
27 tháng 12 2016 lúc 15:31

\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\Leftrightarrow2^5.2^{-2a}< \left(2^5\right)^{-12}\)

\(\Leftrightarrow2^{5-2a}< 2^{-60}\Rightarrow5-2a< -60\Leftrightarrow a>32,5\)

Số nguyên a nhỏ nhất thoả mãn đề bài là a=33

Vũ Việt Anh
31 tháng 12 2016 lúc 14:41

33 nha bạn

Chúc các bạn học giỏi

n hba

hazzymoon
8 tháng 6 2017 lúc 9:32

a=33 nhé

Nguyễn Châu Mỹ Linh
Xem chi tiết
B.Thị Anh Thơ
8 tháng 1 2020 lúc 18:02

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

Khách vãng lai đã xóa
Kitty
Xem chi tiết
Nguyễn Trần Linh Na
Xem chi tiết
Edogawa Conan
21 tháng 7 2019 lúc 15:34

\(\frac{2^{4-x}}{16^5}=32^6\)

=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)

=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)

=> \(2^{4-x}=2^{30}.2^{20}\)

=> \(2^{4-x}=2^{50}\)

=> 4  - x = 50

=> x = 4 - 50 = -46

\(\frac{3^{2x+3}}{9^3}=9^{14}\)

=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)

=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)

=> \(3^{2x+3}=3^{28}.3^6\)

=> \(3^{2x+3}=3^{34}\)

=> 2x + 3 = 34

=> 2x = 34 - 3

=> 2x = 31

=> x = 31/2

nguyễn hoàng lê thi
Xem chi tiết
Edowa Conan
8 tháng 9 2016 lúc 20:59

Câu 1:

a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)

    \(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)

    \(=\frac{1}{2}-\frac{4}{3}\)

     \(=-\frac{5}{6}\)

b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)

    \(=7+\frac{1}{12}+3-\frac{1}{12}-5\)

    \(=5\)

Edowa Conan
8 tháng 9 2016 lúc 21:00

Câu 2:

\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)

\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)

\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)

           Vậy -1\(\le\)x<7

Kẹo Ngọt Cây
Xem chi tiết
Kẹo Ngọt Cây
15 tháng 4 2020 lúc 18:25

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm

Diệp Thiên Giai
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 18:13

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

Lightning Farron
10 tháng 11 2016 lúc 18:18

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

Lightning Farron
10 tháng 11 2016 lúc 18:27

Bài 3:

a)\(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=2009-x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

Vì GTTĐ của số âm bằng số đối của nó

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy với mọi \(x\le2009\) đều thỏa mãn

b)\(\left|3x+2\right|=\left|5x-3\right|\)

\(\Rightarrow3x+2=5x-3\) hoặc \(3x+2=3-5x\)

\(\Rightarrow2x=5\) hoặc \(8x=1\)

\(\Rightarrow x=\frac{5}{2}\) hoặc \(x=\frac{1}{8}\)