Tìm x biết : \(x\sqrt{2}+\sqrt{18}=x\sqrt{18}+\sqrt{27}\)
Tìm x biết: \(x\sqrt{2}+\sqrt{18}=x\sqrt{18}+\sqrt{27}\)
\(x\sqrt{2}+3\sqrt{2}=x+3\sqrt{2}+3\sqrt{3}\Rightarrow x\left(\sqrt{2}-1\right)=3\sqrt{3}\Rightarrow x=\frac{3\sqrt{3}}{\sqrt{2}-1}\)
Tìm x : \(x\sqrt{12}+\sqrt{18}=x\sqrt{8}+\sqrt{27}\)
nhầm đề \(x\sqrt{12}+\sqrt{18}=x\sqrt{18}+\sqrt{27}\)
ah quên nhầm đề đề là : tìm x : \(x\sqrt{2}+\sqrt{18}=x\sqrt{18}+\sqrt{27}\)
Giải các phương trình sau:
a. \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
b. \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)
\(\Leftrightarrow\sqrt{x+3}=3\)
\(\Leftrightarrow x+3=9\)
hay x=6
b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)
Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)
\(\Leftrightarrow4\sqrt{x-3}=20\)
\(\Leftrightarrow x-3=25\)
hay x=28
b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)
\(\Leftrightarrow2\sqrt{x+2}=6\)
\(\Leftrightarrow x+2=9\)
hay x=7
a)\(\sqrt{4x-12}+\sqrt{9x-27}-4\sqrt{x-3}+3-x\)
b) \(\sqrt{25x-25}-3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\)
c) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+18\)
d) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
giúp mk vs
a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)
\(=\sqrt{x-3}+3-x\)
c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)
=>2 căn x-2=18
=>x-2=81
=>x=83
Cho \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a, Rút gọn P
b, Tính P khi \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
a) Ta có: \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
2)
a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:
\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)
Cho E= \(\dfrac{1+xy}{x+y} - \dfrac{1-xy}{x-y} \)
Biết x= \(\sqrt{4+\sqrt{8}} . \sqrt{2+\sqrt{2 + \sqrt{2}}} . \sqrt{2 -\sqrt{2 +\sqrt{2}}}\)
y =\(\dfrac{ 3 \sqrt{8} -2 \sqrt{12}+ \sqrt{20}}{ 3\sqrt{18} -2\sqrt{27} + \sqrt{45}}\)
Lời giải:
\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)
\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)
Do đó:
\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)
Tìm x không am biết
a) \(\sqrt{x}\)=21
b) 3\(\sqrt{x}\)=18
c) \(\sqrt{x}\) < hoặc = \(\sqrt{5}\)
d) 3\(\sqrt{2x}\)>9
ĐKXĐ: `x>=0`
`a,sqrtx=21`
`=>x=21(TMĐK)`
KL...
`b,3\sqrtx=18`
`<=>sqrtx=6`
`=>x=36(TMĐK)`
KL...
`c,sqrtx <=5`
`=>x<=25` kết hợp với điều kiện có `0<=x<=25`
KL....
`d,3sqrt(2x)>9`
`<=>sqrt(2x)>3`
`=>2x>9`
`<=>x>9/2(TMĐK)`
KL...
a. \(\sqrt{x}=21\)
Vì x\(\ge\) 0 nên bình phương 2 vế ta được:
x = 212 \(\Leftrightarrow\) x = 441
Vậy x = 441
b \(3\sqrt{x}=18\) \(\Leftrightarrow\sqrt{x}=18:3\Leftrightarrow x=\sqrt{6}\)
Vì \(x\ge0\) nên bình phương ta được:
x = 62 \(\Leftrightarrow\) x = 36
Vậy x = 36
c. \(\sqrt{x}hoặc=\sqrt{5}\)
\(\sqrt{x}\le\sqrt{5}\) (đk x \(\le\) 0)
\(\Rightarrow x\le5\)
Kết hợp với đk \(\Rightarrow0\le x\le5\)
d. \(3\sqrt{2x}>9\)
\(\Rightarrow\sqrt{2}>3\)
\(\Rightarrow2x>9\)
\(\Rightarrow x>\dfrac{9}{2}\)
Kết hợp với điều kiện \(\Rightarrow x>\dfrac{9}{2}\)