x+2x+3x+4x+.......+50x=5325
Tìm giá trị của x để A= (x+2) + (2x+4) + (3x+6) + (4x+8)+...+ (50x+100) có giá trị bằng – 2550.
ngu tự nghĩ đi
cái này tớ chưa làm nhưng hãy k cho tớ nhé
làm vầy đúng không nhỉ?
A=(x+2) + (2x+4) + (3x+6) + (4x+8)+...+ (50x+100)
<=>(x+2x+3x+4x+...+50x)+(2+4+6+8+...+100)= -2550
<=>(1+50).25x+(2+100).25= -2550
<=>51.25x+102.25= -2550
<=>1275x+2550= -2550
<=>1275x = -2550-2550
<=>1275x = -5100
<=> x = -4
1) (x^3 - x^2)- 4x^2 + 8x - 4 = 0
2) 2x^3 - 50x = 0
3) (x + 1) = ( x + 1)(x - 1)
4) ( 3x+1)^2-4(X-3)^2=0
5)(X+3)(X^2-5X+9)-X^3=2X
6) (4X+3)^2-(4X-3)^2-5X-2=0
7)(X-1)^3-(X-3)(X^2+3X+9)-3X(2-X)=5
\(2x^3-50x=0\)
<=> \(2x\left(x^2-25\right)=0\)
<=> \(2x\left(x-5\right)\left(x+5\right)=0\)
đến đây
bạn tự giải nhé
hk tốt
tìm x , biết
a. 4x(x-5)-(x-1)(4x-3)=5
b. (3x-4)(x-2) = 3x(x-9)-3
c.2(x+3)-x2 -3x=0
d. 8x3-50x=0
e. (4x-30)2-3x(3-4x)
\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a.
4x(x-5) - (x-1)(4x-3)-5=0
4x^2-20x-4x^2+3x+4x+3=0
(4x^2-4x^2)+(-20x+3x+4x)+3=0
13x+3 = 0
13x=-3
x=-3/13
b,
(3x-4)(x-2)-3x(x-9)+3=0
3x^2-6x-4x+8 - 3x^2+27x+3=0
(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0
17x+11=0
17x=-11
x=-11/17
c, 2(x+3)-x^2-3x=0
2(x+3) - x(x+3)=0
(x+3)(2-x)=0
TH1: x+3 = 0; x=-3
TH2: 2-x=0;x=2
Tìm x biết 2(x+3)-x^2-3x=0
x^3+27+(x+3)(x-9)=0
4x^2-25-(2x-5)(2x+7)=0
8x^3-50x=0
(2x-1)^2-25=0
Cho biểu thức:
A = (x + 1) + (2x + 4) + (3x +7) + (4x +10) +...+ (50x + a)
a) Tìm a
b) Tìm x để A=6275
Tìm giá trị của đa thức :x2 + 2x4+3x6+4x8+......+50x100, tại x= -1
Thay x= -1 ta dc:
1 + 2 + 3 + 4 +....+50=1275
-4x^2+8x
(2x-4).(x+1)
x^2-5x-14
3x^2-5x-2
2x-5x5x+6
x^2-5x
7x^2-50x+7
tìm nghiệm
1) \(-4x^2+8x=0\Leftrightarrow-4x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
2) \(\left(2x-4\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=4\\x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
3) \(x^2-5x-14=0\Leftrightarrow\left(x+2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=7\end{cases}}\)
4) \(3x^2-5x-2=0\Leftrightarrow\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
5) xem lại đề
6) \(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
7) \(7x^2-50x+7=0\Leftrightarrow\left(x-7\right)\left(7x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\7x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=\frac{1}{7}\end{cases}}\)
-4x2 + 8x
Đa thức có nghiệm <=> -4x2 + 8x = 0
<=> -4x( x - 2 ) = 0
<=> \(\orbr{\begin{cases}-4x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
( 2x - 4 )( x + 1 )
Đa thức có nghiệm <=> ( 2x - 4 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}2x-4=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
x2 - 5x - 14
Đa thức có nghiệm <=> x2 - 5x - 14 = 0
<=> x2 + 2x - 7x - 14 = 0
<=> x( x + 2 ) - 7( x + 2 ) = 0
<=> ( x + 2 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=7\end{cases}}\)
3x2 - 5x - 2
Đa thức có nghiệm <=> 3x2 - 5x - 2 = 0
<=> 3x2 + x - 6x - 2 = 0
<=> x( 3x + 1 ) - 2( 3x + 1 ) = 0
<=> ( 3x + 1 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}3x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
Chỗ này đề lỗi
x2 - 5x
Đa thức có nghiệm <=> x2 - 5x = 0
<=> x( x - 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
7x2 - 50x + 7
Đa thức có nghiệm <=> 7x2 - 50x + 7 = 0
<=> 7x2 - x - 49x + 7 = 0
<=> x( 7x - 1 ) - 7( 7x - 1 ) = 0
<=> ( 7x - 1 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}7x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{7}\\x=7\end{cases}}\)
thanks FL.Diversity SO MUCH
nh mk ko bt tk điểm cho bạn ntn xin lỗi nhá
tìm x biết:
a) x - 3= (3 - x)^2
b) x^3 + 3/2x^2 + 3/4x + 1/8 = 1/64
c) 8x^3 - 50x = 0
d) (x - 2) (x^2 + 2x + 7) + 2(x^2 - 4) - 5(x - 2) = 0
e) x(x + 3) - x^2 - 3x = 0
f) x^3 + 27 + (x + 3) (x - 9) = 0
Giúp mik vs ạ
a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
hay \(x=-\dfrac{1}{4}\)
c) Ta có: \(8x^3-50x=0\)
\(\Leftrightarrow2x\left(4x^2-25\right)=0\)
\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
Tìm x biết
a). 3x-4/2x+5=3x+7/2x-20
b). 10x-5/7x+2=50x+10/35x-29
a) \(\dfrac{3x-4}{2x+5}=\dfrac{3x+7}{2x-20}\left(đk:x\ne-\dfrac{5}{2},x\ne10\right)\)
\(\Rightarrow\left(3x-4\right)\left(2x-20\right)=\left(3x+7\right)\left(2x+5\right)\)
\(\Rightarrow6x^2-68x+80=6x^2+29x+35\)
\(\Rightarrow97x=45\Rightarrow x=\dfrac{45}{97}\)
b) \(\dfrac{10x-5}{7x+2}=\dfrac{50x+10}{35x-29}\left(đk:x\ne-\dfrac{2}{7},x\ne\dfrac{29}{35}\right)\)
\(\Rightarrow\left(10x-5\right)\left(35x-29\right)=\left(50x+10\right)\left(7x+2\right)\)
\(\Rightarrow350x^2-465x+145=350x^2+170x+20\)
\(\Rightarrow635x=125\Rightarrow x=\dfrac{25}{127}\)
Giải phương trình:
a. \(3\sqrt{8x}-\sqrt{32x}+\sqrt{50x}=21\)
b. \(\sqrt{25x+50}+3\sqrt{4x+8}-2\sqrt{16x+32}=15\)
c. \(\sqrt{\left(x-2\right)^2}=12\)
d. \(\sqrt{x^2-6x+9}-3=5\)
e.\(\sqrt{\left(2x-1\right)^2}-x=3\)
f. \(\sqrt{3x-6}-x=-2\)
h. \(\sqrt{3-2x}-2=x\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
f.
ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{3(x-2)}-(x-2)=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{3}-\sqrt{x-2})=0$
$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{3}-\sqrt{x-2}=0$
$\Leftrightarrow x=2$ hoặc $x=5$ (tm)
h. ĐKXĐ: $x\leq \frac{3}{2}$
PT $\Leftrightarrow \sqrt{3-2x}=x+2$
\(\Rightarrow \left\{\begin{matrix} x+2\geq 0\\ 3-2x=(x+2)^2=x^2+4x+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ x^2+6x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-3+2\sqrt{2}\) (tm)
Vậy.......