Cho S = 4 + 4^2+4^3+......+4^2016 . Chứng minh rằng S chia hết cho 420 .
cho S=4+4^2+4^3+......+4^2016. Chứng minh S chia hết cho 420
S = 4 + 42 + 43 + 44 + 45 + 46 + .......................... + 42010 + 42011 + 42012 + 42013 + 42015 + 42016
S = (4 + 42 + 43 + 44 + 45 + 46) + .......................... + (42010 + 42011 + 42012 + 42013 + 42015 + 42016)
S = (4 + 16 + 64 + 256 + 1024 + 4096) + .................................. + 42009.(4 + 16 + 64 + 256 +1024+ 4096)
S = 5460 + .......................... + 42009.5460
S = 5460.(1 + .................+ 42009)
S = 13.420.(1 +............... + 42009)
420=4.5.3.7
ta thấy S chia hết cho 4
4 đồng dư với 1 mod 3 =) 4+4^2+...4^2016 đồng dư 2016 mod 3 mà 2016 chia hết cho 3
vì 4+4^2=20, 4^3+4^4=..0, tương tự ta có 1008 cặp => S tận cùng là 0
4+4^2+4^3=84 chia hết cho 7=> có 673 cặp 3 số như thế( 2016 chia hết cho 3) =>S chia hết cho 7
từ tất cả => S chia hết hoc 420(4.5.7.3)
cho S=2+4^2+4^3+....+4^2016.Chứng minh S chia hết cho 420
cho S=4+4 mũ 2+4 mũ 3 +.....+4 mũ 2016 .chứng minh rằng Schia hết cho 420
Cho S = 1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40
1) Cho S=1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40
2) S= 5+5^2+5^3+5^4+...+5^96
a) Chứng minh S chia hết cho 126
b) Tìm chữ số tận cùng của S
- Giải giùm mình nha!
Cho tổng S=3+32+33+34+...+390
a)Chứng minh rằng S chia hết cho 4
b)Chứng minh rằng S chia hết cho 13
c)Chứng minh rằng S chia het cho 14
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
Cho S=1/4+2/4^2+3/4^3+...+2016/4^2016. Chứng minh rằng S<1/2
Cho A= 4+4^2+4^3+...+4^23+4^24
Chứng minh rằng A chia hết cho 20, chia hết cho 21, chia hết cho 420
giup mk nhé
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
a)Cho S=5+5^2+5^3+5^4+...+5^2016.Chứng minh rằng S chia hết cho 31.
b)Tìm số tự nhiên n biết:2n+7 chia hết cho n+1.