Cho a,b,c,d thoả mãn a+b=c+d và a^4+b^4=c^4+d^4
Cm a^2015+b^2015=c^2015+d^2015
Cho các số nguyên a, b, c, d thỏa mãn: a+b=c+d và a2+b2=c2+d2.
Chứng minh a2015+b2015=c2015+d2015
Cho các số nguyên a,b,c,d thỏa mãn: \(a+b=c+d\)và \(a^2+b^2=c^2+d^2\)
Chứng minh \(a^{2015}+b^{2015}=c^{2015}+d^{2015}\)
\(a+b=c+d\Rightarrow a^2+2ab+b^2=c^2+2cd+d^2\)
\(\Rightarrow ab=cd\Rightarrow\left(a-b\right)^2=\left(c-d\right)^2\Rightarrow\left|a-b\right|=\left|c-d\right|\)
\(\Rightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}\Rightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}}\)( kết hợp gt ) ....
\(\Rightarrow\)đpcm
Cho a,b,c,d là số nguyên dương thoả mãn a+b=c+d=2015 . Tìm GTLN của tổng a/c+b/d
\(chứng_{ }minh_{ }\frac{a}{b}=\frac{c}{d}_{ }biết_{ }\frac{a^{2015}+b^{2015}}{a^{2015}-b^{2015}}=\frac{c^{2015}+d^{2015}}{c^{2015}-d^{2015}}\)
tick cho mình vài cái cho đủ 100 điểm hỏi đáp đi
Cho a,b,c,d thuộc Z sao cho:
a+b=c+d và a2+b2=c2+d2
CM:a2015+b2015=c2015+d2015
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh::\(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)với \(b,d\ne0,c\ne d\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\). Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:
\(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Mặt khác: \(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{\left(a-b\right)^{2015}}{\left(c-d\right)^{2015}}\ne\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Do vậy không thể chứng minh được đề bài. Suy ra: Đề sai!!!!
Do một số bạn phản ánh về lời giải của mình nên mình quyết định giải lại nhằm bảo vệ danh dự của mình =)))
Giải
Theo giả thiết, áp dụng tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số bằng nhau ,ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a-b}{c-d}\right)^{2015}\) (1)
Mặt khác, áp dụng tính chất dãy tỉ số bằng nhau lần nữa ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\\\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\end{cases}\Leftrightarrow\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}^{\left(đpcm\right)}}\)
Có \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)( tính chất tỉ lệ thức )
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{\left(a-b\right)^{2015}}{\left(c-d\right)^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Vậy .......
Bạn tth làm dài dòng quá, mình sẽ rút ngắn lại cho bạn nha!
cho a;b;c là 3 số thoả mãn a+b+c=2015 và 1/a+1/b+1/c=1/2015
Theo cách làm của mình thì mình không biết có đúng hay không nhưng nhưng đây là cách làm của mình:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2\left(a+b+c\right)}{a.b.c}=\frac{2.2015}{a.b.c}\)
Mà \(\frac{2.2015}{a.b.c}=\frac{1}{2015}\Rightarrow2.2015=\frac{a.b.c}{2015}\)
Vậy có ít một số bằng 2015
Mọi người ơi giúp em 3 bài này với... E làm mãi không được ..
Mọi người giúp em với. Em cảm ơn nhiều ạ.
1. Cho các số a,b,c,d thỏa mãn \(a^2+b^2+\left(a+b\right)^2=c^2+d^2+\left(c+d\right)^2\)
Chứng minh rằng :\(a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)
2. Cho các số a,b,c thỏa mãn \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính giá trị của biểu thức \(A=a^{2014}+b^{2015}+c^{2016}\)
3. Giải phương trình : \(\left(3x^2+x+2015\right)^2+4\left(x^2+1008\right)^2=4\left(x^2-1008\right)\left(3x^2+x+2015\right)\)
Bài1: Cho 2015 số nguyên dương phân biệt không vượt quá 2019. Chứng minh trong 2015 số đó tồn tại 4 số a,b,c,d sao cho a+b+c=d
Giả sử
\(a< b< c< 671\)
\(\Rightarrow a+b+c< 671.3\)
\(\Rightarrow a+b+c< 2013\)
Đặt \(d=a+b+c\)
\(\Rightarrow d< 2013\)
=> \(d\in\) dãy đã cho
=> đpcm