Chứng minh rằng: \(\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\) với mọi a, b \(\ge\)0
Bài 1: Cho a>0;b>0;c>0 thỏa mãn abc=1. Chứng minh rằng:
a)\(a^3+b^3+c^3\ge a+b+c\)
b) \(a^3+b^3+c^3\ge a^2+b^2+c^2\)
Bài 2: Với mọi a,b,c là các số thực. Chứng minh rằng:
\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge a +b+c\)
Bài 3: Cho x,y,z là các số thực dương thỏa mãn \(x+y+z\le1\)
Chứng minh rằng: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{82}\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
Chứng minh rằng:
\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)(Với a, b >= 0)
Bài làm:
Ta có: \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
\(\Leftrightarrow\left(\sqrt{\frac{a+b}{2}}\right)^2\ge\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2\)
\(\Leftrightarrow\frac{a+b}{2}\ge\frac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow\frac{a+b}{2}-\frac{a+b}{4}\ge\frac{2\sqrt{ab}}{4}\)
\(\Leftrightarrow\frac{a+b}{4}\ge\frac{\sqrt{ab}}{2}\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a-b\right)^2\ge0\)luôn đúng (áp dụng Cauchy ngược)
=> đpcm
Áp dụng BĐT Cosi cho 2 số không âm ta có: \(a+b\ge2\sqrt{ab}\left(1\right)\)
Cộng 2 vế của (1) với a+b được
\(2\left(a+b\right)\ge a+2\sqrt{ab}+b\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)(2)
Chia 2 vế của (2) cho 4 được: \(\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
\(\Leftrightarrow\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\left(đpcm\right)\)
chứng minh rằng \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)với mọi a;b lớn hơn hoặc bằng 0
\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Vì (a-b)2\(\ge\)0 luôn đúng nên \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)
Chứng minh rằng nếu a,b>0 thì \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
Áp dụng BĐT cô-si, ta được:
\(\hept{\begin{cases}\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{cases}}\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\) (đpcm)
Vậy....
Biến đổi tương đương ta được :
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}\)
\(\Leftrightarrow\sqrt{ab}\le a-\sqrt{ab}+b\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( đúng với đk )
Với mọi a, b>0 chứng minh \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)
\(\frac{\left(a+b\right).2}{\sqrt{a.4.\left(3a+b\right)}+\sqrt{b.4.\left(3b+a\right)}}\)\(\ge\)\(\frac{2.\left(a+b\right)}{\frac{4a+3a+b}{2}+\frac{4b+3b+a}{2}}\)\(=\frac{4\left(a+b\right)}{8\left(a+b\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi a=b
chứng minh các đẳng thức sau
a)\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}=\)/a/ với a+b>0 và b≠0
b)\(\frac{\sqrt{a}++\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)với a≥0,b≥0 và a≠b
a/
\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)
b/
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
1, Cho x+y=2 Chứng minh x4+y4\(\ge2\)
2,Với mọi a,b Chứng minh a4+ b4\(\ge a^3b+ab^3\)
3, Cho a>0 , b>0. Chứng minh \(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
4, Chứng minh: x4+y4\(\le\frac{x^6}{y^2}+\frac{y^6}{x^2}\)với xva2 y khác 0.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
1/Thêm 6 vào 2 vế,ta cần c/m:
\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)
Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:
\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)
Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)
Với a\(\ge\)0 và b\(\ge\)0 ,chứng minh:
\(\sqrt{\frac{a+b}{2}}\)\(\ge\)\(\frac{\sqrt{a}+\sqrt{b}}{2}\)
Chứng minh bằng biến đổi tương đương :
\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) . Vì hai vế không âm nên bình phương cả hai vế :
\(\frac{a+b}{2}\ge\frac{a+b+2\sqrt{ab}}{4}\) \(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
Vì bđt cuối luôn đúng nên bđt ban đầu dc chứng minh.
Dấu "=" xảy ra khi a = b (a,b không âm)
Mọi người giúp mình bài này với ạ.
Với a,b,c>0. Chứng minh rằng \(\frac{1}{\sqrt{a}}\)+\(\frac{1}{\sqrt{b}}\)+\(\frac{2\sqrt{2}}{\sqrt{c}}\) ≥ \(\frac{8}{\sqrt{a+b+c}}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{2c}\right)=\left(x;y;z\right)\)
BĐT trở thành: \(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}\ge\frac{8}{\sqrt{x^2+y^2+\frac{z^2}{2}}}\)
Ta có: \(VT=\frac{1}{x}+\frac{1}{y}+\frac{2^2}{z}\ge\frac{\left(1+1+2\right)^2}{x+y+z}=\frac{16}{x+y+z}\) (1)
\(\left(1.x+1.y+\sqrt{2}.\frac{z}{\sqrt{2}}\right)^2\le\left(1+1+2\right)\left(x^2+y^2+\frac{z^2}{2}\right)\)
\(\Rightarrow x+y+z\le2\sqrt{x^2+y^2+\frac{z^2}{2}}\)
\(\Rightarrow VP=\frac{8}{\sqrt{x^2+y^2+\frac{z^2}{2}}}\le\frac{16}{x+y+z}\)(2)
Từ (1); (2) suy ra đpcm
Dấu "=" xảy ra khi \(x=y=\frac{z}{2}\) hay \(a=b=\frac{c}{2}\)