voi a,b,x >0. tim gia tri nho nhat cua Q=(x+a)(x+b)/x
Tim gia tri nho nhat cua : A = | x-a | + | x-b | + | x-c| + | x-d | voi a < b < c < d
tim gia tri lon nhat [ hoac nho nhat] cua bieu thuc
a) A=(x+2/3)2 +1/2 voi x ϵ Q
ta có (x+\(\frac{2}{3}\))\(^2\) ≥ 0 ∀ x
=> MinA= \(\frac{1}{2}\)↔\(\left(x+\frac{2}{3}\right)^2\)=0 ⇒x+\(\frac{2}{3}\)=0⇒ x=\(\frac{-2}{3}\)
a, tim gia tri nho nhat cua bieu thuc:
A=|1-x|+8 và giá tri tuong ung cua x
b, tim so nguyen x sao cho:
(x-5).(x+12)<0
a, tim gia tri nho nhat cua bieu thuc :\(A=\)\(|x+19|+|y-5|+1890\)
b,tim gia tri lon nhat cua bieu thuc:\(B=-|x-7|-|y+13|+1945\)
a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Tim gia tri cua x de bieu thuc A=|x-3|+(-100)co gia tri nho nhat ,tim gia tri nho nhat ay
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
tim gia tri nho nhat cua bieu thuc
\(A=\frac{2015}{\left|x\right|-3}\) voi x nguyen
tim gia tri nho nhat cua
A= (x-1).(x+2).(x+3).(x+6)
tim gia tri lon nhat cua:
B=(1-\(x^n\)).(1+\(x^4\))+(2-\(y^n\)).(2+\(y^n\))
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
tim gia tri nho nhat cua
A=|3,7-X|+2,5
B=|X+1,5|-4,5
tim gia tri lon nhat cua
C=1,5-|x+1,1|
D=-3,7-|1,7-x|
a , Tim gia tri nho nhat cua bieu thuc A = 31 - \(\sqrt{2x+7}\)
b , Tim gia tri lon nhat cuar bieu thuc B = -9 + \(\sqrt{7}+x\)b
a) \(A=31-\sqrt{2x+7}\)
Ta có: \(-\sqrt{2x+7}\le0\forall x\)
\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)
Vậy MIN A = 31