Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ghost Rider
Xem chi tiết
Trương Thành Đạt
11 tháng 6 2015 lúc 8:05

Hệ \(\Leftrightarrow\frac{x+y}{xy}=\frac{5}{6};\frac{y+z}{yz}=\frac{7}{12};\frac{x+z}{xz}=\frac{3}{4}\)

     \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\left(1\right);\frac{1}{y}+\frac{1}{z}=\frac{7}{12}\left(2\right);\frac{1}{x}+\frac{1}{z}=\frac{3}{4}\left(3\right)\)

Cộng (1), (2),(3) vtv:\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=\frac{13}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{13}{12}\left(4\right)\)

Lấy (4) trừ (1),(2),(3) :\(\frac{1}{z}=\frac{1}{4};\frac{1}{x}=\frac{1}{2};\frac{1}{y}=\frac{1}{3}\)

Vậy: \(x=2;y=3;z=4\)

hoàng long tuấn
5 tháng 5 2019 lúc 20:25

x=2 ,y=3 ,z=4

Che Vu Anh Thu
7 tháng 1 2020 lúc 10:43

Các bạn giải xót nghiệm (0;0;0) rồi nha

Khách vãng lai đã xóa
nguyen kim chi
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
Thanh Tâm
Xem chi tiết
HOAI DƯƠNG THI
Xem chi tiết
Lê Thế Tài
Xem chi tiết
hoangf
Xem chi tiết
Xyz OLM
18 tháng 12 2022 lúc 15:03

Ta có x + y + z = 0 

<=> (x + y + z)2 = 0

<=> \(x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Leftrightarrow xy+yz+zx=-3\) (vì x2 + y2 + z2 = 6)

\(\Leftrightarrow x\left(y+z\right)+yz=-3\)

\(\Leftrightarrow-x^2+yz=-3\Leftrightarrow yz=x^2-3\) (vì x + y + z = 0)

Khi đó \(x^3+y^3+z^3=x^3+(y+z).(y^2+z^2-yz)\)

\(=x^3-x.[6-x^2-(x^2-3)]\)

\(=x^3-x.(9-2x^2)=3x^3-9x=6\)

Ta được \(\Leftrightarrow x^3-3x-2=0\Leftrightarrow(x^3+1)-3(x+1)=0\)

\(\Leftrightarrow(x+1)(x^2-x-2)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Với x = -1 ta có hệ \(\left\{{}\begin{matrix}y+z=1\\y^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\(1-z)^2+z^2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\z^2-z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-z\\\left[{}\begin{matrix}z=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\z=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\z=2\end{matrix}\right.\end{matrix}\right.\)

Với x = 2 ta có hệ : \(\left\{{}\begin{matrix}y+z=-2\\y^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\(-2-z)^2+z^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z^2+2z+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2-z\\z=-1\end{matrix}\right.\Leftrightarrow y=z=-1\)

Vậy (x;y;z) = (2;-1;-1) ; (-1 ; 2 ; -1) ; (-1 ; -1 ; 2)

hoangf
18 tháng 12 2022 lúc 19:57

em cảm ơn ạ

Bùi Khánh Linh
Xem chi tiết
alibaba nguyễn
4 tháng 11 2016 lúc 22:30

Ta có

\(\sqrt{4x-1}\le\frac{1+4x-1}{2}=2x\)

\(\sqrt{4y-1}\le2y\)

\(\sqrt{4z-1}\le2z\)

Cộng vế theo vế ta được

\(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\le2\left(x+y+z\right)\)

Theo đề bài ta có khi cộng pt (1), (2), (3) vế theo vế thì được

\(\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}=2\left(x+y+z\right)\)

Dấu = xảy ra khi x = y = z = \(\frac{1}{2}\)

Kawasaki
Xem chi tiết