Tìm số nguyên tố p để : p + 16 và p + 26 đều là số nguyên tố
Tìm số nguyên tố P để :
a) P+3; P+5 đều là số nguyên tố
b) P+26; P+23 đều là số nguyên tố
tìm số nguyên tố p để :
a) p+3;p+5 đều là số nguyên tố
b) p+26;p+23 đều là số nguyên tố
Tìm số nguyên tố P để P+26,P+14,P+12,P+18 đều là số nguyên tố
Bài 1 : Tìm số nguyên tố p để p^2+41 là số nguyên tố
Bài2: Tìm số nguyên tố p để p^2+4vàp^2-4 đều là số nguyên tố
Bài3: Tổng 5 số nguyên tố là 142 . Tìm số nguyên tố nhỏ nhất trong 5 số trên
Bài4: tìm 2 số nguyên tố sao cho tổng và tích của chúng đều là số nguyên tố
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây
Tìm số nguyên tố p để :
a , p + 2 , p + 4 , p + 8 , p +10 đều là số nguyên tố
b , p + 26 , p+ 28 , p + 34 đều là số nguyên tố
gấp :( hứa sẽ tick :(
Tìm số nguyên tố p sao cho p+8 và p+16 đều là các số nguyên tố
Trường hợp 1: p=3
=> p+8=11 và p+16=19(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+16=3k+18(loại)
Tìm số nguyên tố p sao cho p + 8 và p + 16 đều là các số nguyên tố.
tìm số nguyên tố p để có
a) p+10 và p+14 đều là số nguyên tố
b) p+2 và p+6 , p+8 đều là số nguyên tố
c) p+6, p+12 và p+24, p+38 đều là số nguyên tố
d) p+2, p+4 cũng là số nguyên tố
tớ chỉ biết làm phần d thôi
Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2
+) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5
p+4=3+4=7 là số nguyên tố (chọn)
+) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)
+) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)
Vậy số cần tìm là 3
Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé
a) +) Ta xét p=2 \(\Rightarrow\)p+10 =2+10=12 là hợp số trái với đề bài (loại)
p+14=2+14=16 là hợp số trái với đề bài (loại)
+) Ta xét p=3\(\Rightarrow\)p+10=3+10=13 là số nguyên tố (chọn)
p+14=3+14=17 là số nguyên tố (chọn)
+) Nếu p=3k+1 thì p+10=3k+1+10=3k+11
p+14=3k+1+14=(3k+15)\(⋮\)3 là hợp số (loại)
+) Nếu p=3k+2 thì p+10=3k+2+10 số (loại)
\(\Rightarrow\)(3k+12)\(⋮\)3 là hợp số (loại)
Vậy p=3
NHỚ K NHA
Tìm số nguyên tố p để có:
a) p + 10 và p + 14 đều là số nguyên tố
b) p + 2; p + 6 và p + 8 đều là số nguyên tố
a, Nếu p = 3k (k \(\in\) N ) và p là số nguyên tố
=> k = 1 => p = 3
=> p + 10 = 3 + 10 = 13 (Thỏa mãn là số nguyên tố)
=> p + 14 = 3 + 14 = 17 (Thỏa mãn là số nguyên tố)
Nếu p = 3k + 1
=> p + 14 = 3k + 1 + 14 =3k + 15 = 3(k + 5) chia hết cho 3 (loại)
Nếu p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) chia hết cho 3 (loại)
Vậy p = 3 thì p + 10 và p + 14 đều là số nguyên tố
b, Nếu p = 3k
=> p + 6 = 3k + 6 = 3(k + 2) chia hết cho 3 (loại)
Nếu p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k +1) chia hết cho 3 ( loại )
Nếu p = 3k + 2
=> k = 1 => p = 5
=> p + 2 = 5 + 2 = 7 (TM)
=> p + 6 = 5 + 6 = 11 (TM)
=> p + 8 = 5 + 8 = 13 (TM)
Vậy p = 5 thì p + 2; p + 6 và p + 8 đều là số nguyên tố
A ) trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.
mK mới làm đc câu a thui !bạn thông cảm