Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 3 2019 lúc 18:17

- Cách 1: Chia tử thức và mẫu thức cho n:

Đáp án là B

- Cách 2: Thực chất có thể coi bậc cao nhất của tử thức và mẫu thức là 1, do đó chỉ cần để ý hệ số bậc 1 của tử thức là √4, của mẫu thức là 2, từ đó tính được kết quả bằng 1. Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 10 2019 lúc 7:16

Một người bình thường vô...
Xem chi tiết
Lê Thị Thục Hiền
28 tháng 6 2021 lúc 14:36

a) \(5^{n+2}+26.5^n+8^{2n+1}=25.5^n+26.6^n+8.8^{2n}\)

\(=5^n.51+8.64^n\)

Có \(64\equiv5\) (mod 59)

\(\Rightarrow64^n\equiv5^n\) (mod 59)

\(\Rightarrow8.64^n\equiv8.5^n\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\) (mod 59)

mà \(8.5^n+5^n.51=59.5^n\)\(\equiv0\) (mod 59)

\(\Rightarrow5^n.51+8.64^n\equiv8.5^n+5^n.51\equiv0\) (mod 59) 

\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}⋮59\)

b) \(4^{2n}-3^{2n}-7=16^n-9^n-7\)

Có \(16^n-9^n-7=\left(16-9\right)\left(16^{n-1}+...+9^{n-1}\right)-7=7\left(16^{n-1}+...+9^{n-1}\right)-7⋮\)\(7\) (I)

Có \(16\equiv1\) (mod 3) \(\Rightarrow16^n\equiv1\) (mod 3) mà \(7\equiv1\) (mod 3)

\(\Rightarrow16^n-7\equiv0\) (mod 3) mà \(9^n\equiv0\) (mod 3)

\(\Rightarrow16^n-9^n-7⋮3\) (II)

Có \(9^n\equiv1\) (mod 8)\(\Rightarrow9^n+7\equiv8\) (mod 8) 

\(\Rightarrow9^n+7⋮8\)  mà \(16^n=2^n.8^n⋮8\) 

\(\Rightarrow16^n-9^n-7⋮8\) (III)

Do \(\left(3;7;8\right)=1\)\(,3.7.8=168\)

Từ (I) (II) (III) \(\Rightarrow16^n-9^n-7⋮168\) 

\(\Rightarrow\) Đpcm

Nguyễn Hoài Đức CTVVIP
28 tháng 6 2021 lúc 15:54

a) 5n+2+26.5n+82n+1=25.5n+26.6n+8.82n5n+2+26.5n+82n+1=25.5n+26.6n+8.82n

=5n.51+8.64n=5n.51+8.64n

Có 64≡564≡5 (mod 59)

⇒64n≡5n⇒64n≡5n (mod 59)

⇒8.64n≡8.5n⇒8.64n≡8.5n (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51⇒5n.51+8.64n≡8.5n+5n.51 (mod 59)

mà 8.5n+5n.51=59.5n8.5n+5n.51=59.5n≡0≡0 (mod 59)

⇒5n.51+8.64n≡8.5n+5n.51≡0⇒5n.51+8.64n≡8.5n+5n.51≡0 (mod 59) 

Hoàng Thị Kim Ngân
1 tháng 11 2021 lúc 15:13

cho e hỏi là 3 dấu gạch ngang là gì vậy ạ

Khách vãng lai đã xóa
đanh khoa
Xem chi tiết
Mathematics❤Trần Trung H...
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Mathematics❤Trần Trung H...
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Mathematics❤Trần Trung H...
26 tháng 5 2019 lúc 22:35

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 8 2018 lúc 11:42

Chọn B

lim 4 n 2 + 5 + n + 4 2 n − 3 = lim 4 + 5 n 2 + 1 n + 4 n 2 2 − 3 n = 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 5 2018 lúc 17:55

Đáp án C

lê quang vinh
Xem chi tiết
soyeon_Tiểu bàng giải
20 tháng 5 2016 lúc 15:35

Ta có 36n+6/42n+14=18n+3/21n+7

Gọi d là ước nguyên tố chung của 18n+3 và 21n+7

Suy ra 18n+3 chia hết cho d, 21n+7 chia hết cho d

Suy ra 7.(18n+3)=126n+21 chia hết cho d, 6.(21n+7) chia hết cho d

Suy ra 126n+21 chia hết cho d, 126+42 chia hết cho d

Ta có

(126n+42)-(126n+21)=126n+42-126n-21=21 chia hết cho d

Mà d nguyên tố nên d thuộc {3;7}

Với d=3 thì 18n+3 chia hết cho 3, luôn đúng

21n+7 chia hết cho 3, vô lí ( loại)

Với d=7 thì 18n+3 chia hết cho 7 suy ra 18n+3-21 chia hết cho 7 hay 18n-18 chia hết cho 7

Suy ra 18.(n-1) chia hết cho 7. Mà (18,7)=1 nên n-1 chia hết cho 7 suy ra n=7k+1 (k thuộc Z)

21n+7 chia hết cho 7, luôn đúng

Vậy với n=7k+1(k thuộc Z) thì phân số rút gọn được

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2017 lúc 5:54

Giải bài 2 trang 131 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Giải bài 2 trang 131 SGK Toán 9 Tập 2 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 8 2018 lúc 11:38

Giải bài 2 trang 131 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Giải bài 2 trang 131 SGK Toán 9 Tập 2 | Giải toán lớp 9

mãi mãi là TDT
Xem chi tiết